
MathCode F90

Peter Fritzson

MathCode F90 Release 1.2

September 2007

MathCode® is a trademark of MathCore Engineering AB.

Mathematica® is a trademark of Wolfram Research Inc.

Matlab® is a trademark of MathWorks Inc.

Windows95/98/NT/XP, Visual C++, MS-DOS, Developer Studio and MFC are trademarks of
Microsoft corporation.

UNIX® is a trademark of The Open Group.

Solaris® is a trademark of Sun Microsystems Inc.

Other trademarks belong to their respective owners.

For further information, visit http://www.mathcore.com or email info@mathcore.com

For support, email support@mathcore.com

Copyright © 1998-2006 MathCore Engineering AB

All rights reserved. Reproduction or use of editorial or pictorial content in any manner is prohib-
ited without explicit permission provided in writing. No patent liability is assumed with respect to
the use of the information contained herein. While every precaution has been taken in the prepa-
ration of this book, the publisher assumes no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information contained herein.

First edition, 2006

Preface

Mathematica is a comprehensive numeric and symbolic programming system with applica-
tions in a wide range of areas. The MathCode® code generation system presented in this
book adds very high performance, connectivity to external applications and easy-to-use ma-
trix arithmetic to this system. The combined Mathematica & MathCode system becomes a
very powerful environment that supports both design, prototyping, programming and docu-
mentation.

MathCode makes it possible to develop prototypes in the interactive Mathematica
environment which can be automatically translated to fast production code in C++ or
Fortran90 and, if necessary, linked to external applications. Generated code is typically
about 1000 times faster than basic Mathematica code, and it is often close to 100 times faster
than code generated by the standard Mathematica Compile. Both stand-alone code and
connected code can be produced. Connectivity from Mathematica to C, C++, Fortran77 or
Fortran90 code is obtained by automatically generating MathLink code for calling generated
code and external applications.

Callbacks from external applications to Mathematica can be generated automatically.
Generation of stand-alone external code is supported. Symbolic Mathematica code can be
translated provided that the final result of symbolic operations are arithmetic expressions.

To summarize, MathCode opens up completely new possibilities for cost-effective
development of high-performance computational applications in the highly productive
Mathematica environment.

Several people have contributed to particular subject matters within this book and
MathCode. Johan Gunnarsson contributed to the general design in a number of places, most
of the chapter on array slice operations as well as their implementation in Mathematica,
parts of the high-level code transformations, and several notebook examples. Vadim
Engelson implemented parts of the low-level code generator and helped with the external
functions and trouble shooting chapter, as well as contributed to the MathCode array
package and the implementation of external functions and callbacks. Pontus Lidman made
most of the index to this book, most of the installation instructions, and helped with editing
and minor corrections. Mats Jirstrand gave useful comments regarding the manuscript.

Yelena Turetskaya checked the most recent version of this book. Many other people have
read the manuscript and given valuable comments. Thank you!

The MathCode system is inspired by the code-generation facilities in an earlier research
prototype called ObjectMath, intended for object-oriented mathematical modeling and
efficient code generation. This prototype was developed between 1990-96 at the
Programming Environments Laboratory, Department of Computer and Information
Science, Linköping University, with contributions from myself, Dag Fritzson, Niclas
Andersson, Vadim Engelson, Johan Herber, Patrik Hägglund, Lars Viklund, Rickard
Westman, and Lars Willför. Vadim Engelson has maintained and further developed the
system, including the most recent version. The development of ObjectMath was strongly
influenced by the fruitful cooperation with SKF, where the system was used for applications
in bearing modeling and simulation.

Linköping, Sweden, 2004 Peter Fritzson

How to Read this Book

This section gives a short reader’s guide to the contents of this book. Before starting to read,
note that installation instructions for MathCode are distributed together wth installation me-
dia, See distribution CD and read the instructions before you start software installation.
MathCode FAQ (frequently asked questions) as well as latest software updates are availi-
able at www. mathcore.com

Chapter 1 gives a quick introduction to the basic facilities in MathCode, including a small
“hands-on” example for the reader to try out. This introduction is enough to be able to use
MathCode on simple applications.

Chapter 2 provides more comprehensive examples of translation. This includes both
symbolically expanded code and numeric code, how to organize your code into packages to
be translated by MathCode, as well as performance measurements of compiled code and
comparison with Matlab. After reading chapter 1 and looking at these examples you should
be able to use MathCode on medium-sized applications, even though it is advisable to read
appropriate additional chapters for more complete information.

Chapter 3 covers the convenient array, vector, and matrix operations made available in
Mathematica by MathCode. This chapter should be read by anyone interested in array and
matrix operations.

Chapter 4 explains the notions of type system and static/dynamic typing. The need for
typing and some of the design decisions in MathCode are motivated. Reading this chapter
is not necessary in order to use MathCode but gives useful background information.

Additional information concerning declarations of constants, variables, arrays, and
functions is given in Chapter 5, which is more detailed than the quick overview in Chapter 1.

Chapter 6 presents an overview of data structure allocation and declaration, with special
emphasis on arrays. Related array issues, such as array indexing, are also covered.

Chapter 7 gives a comprehensive description of commands and options for code
generation, compilation, linking with compiled object modules and/or external libraries, and
building executables.

Chapter 8 presents the MathCode call interface to external code written in languages
such as C, C++, Fortran77 and Fortran90, as well as the callback mechanism to

Mathematica from code written in these languages.(Mathcode C++ only)
Chapter 9 presents system information, MathCode distribution structure and installation

instructions.
Chapter 10 explains the MathCode translation structure and gives hints on

troubleshooting.
The typed subset of Mathematica which can be compiled by MathCode is defined in

Appendix A. Use this appendix as a short reference guide.

7

Contents

1 Quick Tour of MathCode 17

1.1 Introduction . 17
1.2 Short Example . 17
1.3 Using the MathCode System . 19

1.3.1 Code Generating Phase . 20
1.3.2 Building Phase . 21
1.3.3 Executing Phase . 21

1.4 MathCode Type System . 21
1.4.1 Dual Type System . 22
1.4.2 Basic Types . 22
1.4.3 Declarations . 22
1.4.4 Function Signatures . 23
1.4.5 Arrays and Lists . 25

Basic Array Static Type Definition 25
Examples . 25
Unspecified Dimension Sizes . 26
Named Dimension Placeholders . 26
Array Sizes in Function Signatures 26
Dimension Sizes of Array Parameters 26
Initialization of Arrays in Declarations 27

1.5 Compilation to Fortran90 code . 27
1.5.1 Calling the Code Generator . 28

CompilePackage . 28
SetCompilationOptions . 28

8

Compiling Different Items . 28
1.5.2 Building . 29

MakeBinary . 30
BuildCode . 30

1.5.3 Installing . 30
InstallCode . 30

1.5.4 Executing . 31
1.5.5 Uninstalling . 31

1.6 Matrix Operations . 31
1.7 Implementing Missing Mathematica Functions 32

1.7.1 An Example systemF90.nb Notebook 32
Initialization Needed to use MathCode 33
Package Header . 33
Public Exported Global Symbols . 33
Private Implementation Section . 33
Compiling . 34
Building . 34
Install and Test . 34

1.8 Interfacing With External Libraries . 34
1.9 MathCode Limitations . 35

2 Getting Started by Examples 37

2.1 Compilation and Code Generation . 38
2.2 Two Modes of Code Generation . 38
2.3 The SinSurface Application Example . 40

2.3.1 Introduction . 40
2.3.2 Initialization . 40

Check Current Directory . 40
2.3.3 Start of the SinSurface Package . 41

Exported Symbols . 41
Setting Compilation Options . 42

2.3.4 The Body of the SinSurface Package 42

9

2.3.5 Functions and Declarations to be Translated to Fortran90 . 42
Global Variables . 42
sin, cos . 42
arcTan . 43
sinFun2 . 43
calcPlot . 44
End of SinSurface Package . 44

2.3.6 Execution . 44
Mathematica Evaluation . 44
Using Mathematica Standard Compile[] 45

2.3.7 Using the MathCode Code Generator 45
The Generated Fortran90 Code . 46
Compiling and Linking the Fortran90 Code 50
Installing and Connecting to Mathematica 51
Execution of generated Fortran90 Code 51

2.3.8 Performance Comparison . 52
2.4 The Gauss Application Example . 53

2.4.1 The Gauss Package . 53
Initialization of the Package . 53
Start the Package . 53
Define Exported Symbols . 53
Define the Functions and Variables 53
GaussSolveArrayslice . 54
GaussSolveForLoops . 56
The Compiled GaussSolveForLoops function, using Compile[]

 58
End of the Gauss Package . 60

2.4.2 Executing the Interpreted Version in Mathematica 60
Run GaussSolveArrayslice . 60
Run the For-loop Version . 60

2.4.3 Generation of Fortran90 code . 60
The Produced Fortran90 Code for Gauss 61

10
2.4.4 Building the Executable . 64
2.4.5 Installing Compiled Code . 64
2.4.6 Prepare for Execution . 64
2.4.7 External Execution . 64

External Execution of Array Slice Version 64
External Array Slice Version, MathLink in each Iteration . . 65
External Execution of For-Loop Version 65
External For-loop Version, MathLink in each Iteration 65
Internal Execution of LinearSolve as a Comparison 66
Internal execution of Compiled version 66

2.4.8 Cleanup . 66

3 Matrix and Vector Operations 67

3.1 Examples of Array Operations . 67
3.2 Index Range Notation . 68

3.2.1 Omitting End of Index Range . 68
3.2.2 Omitting Start of Index Range . 69
3.2.3 Omitting Both Start and End of a Range 69

3.3 Vectors Versus Rows and Columns . 70
3.3.1 One-dimensional Vectors . 70
3.3.2 Row Vectors . 70
3.3.3 Column Vectors . 70

3.4 Extracting or Assigning Vectors From Vectors 71
3.5 Extracting Vectors From Matrices . 72

3.5.1 Extracting One-dimensional Vectors 72
3.5.2 Extracting Vectors as Submatrices of Shape 1×n or n×1 . . . 72

3.6 Assigning Vectors to Rows or Columns of Matrices 73
3.7 Extracting and Assigning Arbitrary Submatrices 74
3.8 Promotion of Scalars to Vectors or Matrices 75
3.9 An Example Matrix Function . 76
3.10 Current Limitations . 76

11
4 Rationale for Type Declarations in Mathematica 77

4.1 Why Type Declarations? . 77
4.2 Types for Code Generation . 78
4.3 The Need for Type Checking . 78
4.4 Types for Object Oriented Simulation Modeling 79
4.5 Introducing Declarations in Mathematica 79
4.6 Declarations in Mathematica Packages . 80
4.7 Basic Types . 80
4.8 Dual Type System . 81
4.9 Typed Function Declarations . 81

4.9.1 Type Arguments to the Mathematica Compile Function . . . 83
4.10 Typed Declarations . 83

5 More on Typing and Declarations 85

5.1 Basic Types . 85
5.2 Declarations . 86

5.2.1 Variable Declarations . 86
5.2.2 Constant Declarations . 87

5.3 Type Constructors and Data Constructors 88
5.3.1 List Structures and Array Types . 88
5.3.2 Array Type Constructors . 88
5.3.3 Data Constructors . 89

5.4 Array Variable Declarations . 89
5.4.1 Declaring Multiple Array Variables 89

5.5 Functions . 90
5.5.1 Functions with No Input Parameters 90
5.5.2 Functions with Multiple Return Values 91
5.5.3 Functions Returning Arrays . 91
5.5.4 Functions with No Return Value . 91
5.5.5 Functions with Local Variables . 92
5.5.6 Structure of a Small Example Package with Typed Functions 93

12
6 Data Allocation and Initialization 95

6.1 When Should Allocation and Initialization be Performed? 96
6.1.1 Initialization of Global Variables . 96

Local Variables . 97
6.1.2 Execution Parameters . 97

6.2 Array Allocation and Initialization . 97
6.2.1 Array Usage and Representation in Mathematica 98
6.2.2 Array Initialization by Promoted Scalar Values 98

Initialization of Runtime Sized Arrays 99
Allocation Without Initialization . 99
General Initializers . 100
Unspecified Dimension Sizes . 101

6.2.3 Summary of Array Dimension Specification 102
Array Dimensions for Function Parameters and Results . . . 102
Array Dimensions for Declared Variables 102

6.3 Array Index Bounds . 103
6.3.1 Array Index Lower Bounds . 103
6.3.2 Dimension Sizes and Upper Index Bounds 104
6.3.3 Declaring Local Arrays with Variable Dimension Sizes . . . 104

Negative Indices . 105
6.4 When x in a[[x]] is negative, a range check error will be triggered if range

checking is turned on using SetCompilationOptions[CompilerOptions->"/CB"]. If
range check is turned off (default), the result is unpredictable. Array Constructor
Functions 105

6.4.1 Array Dimension Size Functions 106

7 Compilation and Code Generation 109

7.1 Overall System Structure . 110
7.2 Compilation and Code Generation Aspects 110

7.2.1 Target Code Type . 110
7.2.2 Evaluation of Symbolic Operations 111
7.2.3 Integration . 111

13
7.3 Invoking the Code Generator . 112
7.3.1 CompilePackage[]—the Primary Code Generation Function 112

CompilePackage[packagename] . 112
Different Items to be Compiled . 112

7.3.2 Optional Parameters to Control Code Generation 113
SetCompilationOptions . 113
Priority of Parameter Settings . 113
Option EvaluateFunctions . 114
Option UnCompiledFunctions . 114
Option DisabledMathLinkFunctions 114
Option MainFileAndFunction . 114
Option NeedsExternalLibrary . 115
Option NeedsExternalObjectModule 115
Option MacroRules . 115
Option DebugFlag . 116
Option Language . 116
Option Compiler . 116
Option CompilerOptions . 117
Option LinkerOptions . 117
Option MathCodeMakeFile . 117

7.4 Standard Layout of a Package to be Compiled 118
7.5 Code Generation of Symbolically Evaluated Expressions 119

Common Subexpression Elimination 119
A Short Example . 119

7.6 Building Executables . 120
7.6.1 MakeBinary["packagename"] . 121

Setting Compilation Options for the Fortran90 Compiler . 121
Controlling Type of Binary Executable 121

7.6.2 BuildCode["packagename"] . 122
7.7 Integration . 122

7.7.1 Calling Compiled Generated Code via MathLink 122
Code Storage Places . 124

14
7.7.2 Integration of External Libraries and Software Modules . . 125
7.7.3 Callbacks to Mathematica . 125

7.8 Providing Missing Mathematica Functions 125
7.8.1 The system Package . 125

7.9 Fortran90 Fortran Code Compilation from Command Shell 126
7.9.1 Command Shell Compilation in Windows using make 126
7.9.2 Command Shell Compilation in Windows using nmake . . . 126
7.9.3 Command Shell Compilation in UNIX 126

8 Interfacing to External Libraries 129

9 System and Installation Information 131

9.1 Files in the MathCode Distribution . 131
9.2 System-specific installation information 131
9.3 ReadMe Information and Release Notes . 132

10 Trouble Shooting 133

10.1 Code Generation Phases . 134
10.2 Error Categories . 134

10.2.1 Packaging Errors - Missing Functions 135
10.2.2 Syntactic Errors . 135
10.2.3 Semantic Errors . 136
10.2.4 Errors During Fortran Compilation and Linking 137
10.2.5 Internal Code Generator Errors . 137
10.2.6 Long Compilation Times . 137
10.2.7 Internal Errors During Execution of Generated Code 137

10.3 Appendix . 138

A The Compilable Mathematica Subset 139

A.1 Operations not in the Compilable Subset . 139
A.2 Predefined Functions and Operators . 140

15
A.2.1 Statements and Value Expressions 141
A.2.2 Function Call . 142
A.2.3 Function Definition . 142
A.2.4 Scope Constructs . 143
A.2.5 Control Statements . 144
A.2.6 Mapping Operations . 144
A.2.7 Iterator Expressions . 145
A.2.8 Input/Output Operations . 146
A.2.9 Standard Arithmetic and Logic Expressions 146
A.2.10 Named Constants . 149
A.2.11 Assignment Expressions . 149
A.2.12 Array Data Constructors . 150
A.2.13 Array Data Manipulation . 150
A.2.14 Statisics and sorting functions . 150
A.2.15 Array Dimension Functions . 150
A.2.16 Array Indexing . 151
A.2.17 Array Section Operations . 151
A.2.18 Other Expressions . 152

List . 152
Apply . 152

A.2.19 Operators Which May Have Side-effects 153
A.3 Predefined Types . 154

A.3.1 Basic Types . 154
A.3.2 Array Type Constructors . 154

A.4 Predefined Constants . 154

16

1.1 Introduction 17
Chapter 1 Quick Tour of MathCode

1.1 Introduction
MathCode is a Mathematica application package which includes the following:

• Translation of a subset of Mathematica to efficient Fortran90 code
• Type annotations compatible with standard Mathematica
• Availability of Matlab-like matrix operations on array sections both in Mathematica and

in compiled code

• Transparent calling of compiled executable code via MathLink or stand-alone execution

The performance of compiled generated Fortran90 code is often approximately 1000 times
better than standard interpreted Mathematica, and often 100 times better than code compiled
using the internal Mathematica compiler.

1.2 Short Example
The following short example shows one way of using the MathCode system. It is recom-
mended that you try it yourself! You must have a Fortran90 compiler installed on your sys-
tem in order for the generated code to be executable.

The following command will load MathCode:

Needs["MathCode`"]

You might want to set the working directory to a subdirectory such as ".../DemosF90/Sim-
ple" under the MathCode root directory. Otherwise all files produced by MathCode will be
written to the current directory.

SetDirectory[$MCRoot<>"/DemosF90/Simple"];

Define a simple Mathematica function that sums the first n integers:

18 1.2 Short Example
sumint[n_] := Module[{
 res = 0, i
 },
 For[i=1, i<=n, i++,
 res = res+i
];
 res
];

Specify the types of the input parameters, function results, and local variables. This is done
by a type markup syntax. The parameter, the result, and the local variables are declared as
integers:

Declare[
 sumint[Integer x_]->Integer, {Integer, Integer}]

Instead of declaring the types using a separate Declare, you may put them directly inside
the function definition:

sumint[Integer n_]->Integer := Module[{
 Integer res = 0,
 Integer i
 },
 For[i=1, i<=n, i++,
 res = res+i
];
 res
];

Generate Fortran90 code of the functions, including sumint, in the context "Global`"1.
Then compile and link to an executable connected via MathLink:

BuildCode[]

Start and connect the generated external program seamlessly to Mathematica.

InstallCode[];

The external variant of sumint can now be called transparently in the same way as a func-
tion inside Mathematica:

1. Initially the default compiled package name is Global if the package name is not given
explicitly as an argument to BuildCode. See also Section 7.3.1 on page 112.

1.3 Using the MathCode System 19
sumint[10000]

The result is:

50005000

Give the command to look at the generated Fortran90 source file:

!!Global.f90

The generated source code:

function sumint(n) result(mc_O1)
 use MathCodePrecision
 use MathCodeSheep
 implicit none
 integer(mc_int), intent(in) :: n
 integer(mc_int) mc_O1
 integer(mc_int) i
 integer(mc_int) res

 res = 0
 i = 1
 do while (i <= n)
 res = res+i
 i = i+1
 end do
 mc_O1 = res
end function sumint

Uninstall the external code and clean up the directory:

UnInstallCode[];

CleanMathCodeFiles[];
Remove["Global`"];

1.3 Using the MathCode System
The MathCode application can easily be made available by executing the following com-
mand in Mathematica:

Needs["MathCode‘"]

20 1.3 Using the MathCode System
Mathematica MathCode
Generator

Mathematica
packages, expressions

Call symbolic evaluation

foo.f90, foomain.f90, footm.c, foo.tm, fooif.f90, foo.mh

Figure 1.1: Generating Fortran90 code with MathCode, for a package called foo.

To generate code for short examples it is convenient to write the functions directly in the
"Global‘" context as we did with the short example function sumint above, which im-
plies that the resulting name for the generated package will be "Global". However, from
now on the package name "foo" is assumed.

If you are compiling your own package, e.g. called foo, using MathCode, you also need
to mention MathCodeContexts within the path of the package as below:

BeginPackage["foo‘",{MathCodeContexts}]

foo.exe
Numerical

Package(s)
fooml.exe

foomain.f90
foo.f90

foo.tm
fooif.f90

Libraryfootm.c

Figure 1.2: Building two executables from package foo, possibly including numerical libraries.

1.3.1 Code Generating Phase

The MathCode code generator translates a Mathematica package, here called foo, to a cor-
responding Fortran90 source file, here called foo.f90. Additional files which are auto-
matically produced are: the MathCode header file foo.mh, the MathLink related files
footm.c, foo.tm, and fooif.f90. These files enable transparent calling of the
Fortran90 versions of functions in foo from Mathematica, and foomain.f90 which con-

1.4 MathCode Type System 21
tains the program part needed when building a stand-alone executable for foo (Figure 1.3)

1.3.2 Building Phase

The generated file foo.f90 created from the package foo together with additional files are
compiled and linked into an executable: either foo.exe or fooml.exe. Numerical li-
braries may be included in the linking process by specifying inclusion of external libraries
(Figure 1.2).

1.3.3 Executing Phase

The produced executable foo.exe1 can be used for stand-alone execution, whereas
fooml.exe is used when transparent calling from Mathematica via MathLink of the com-
piled Fortran90 functions in fooml.exe is desired.

foo.exe

Mathematica
Needs["foo‘"]

fooml.exe
MathLink

Figure 1.3: Executing compiled code. The executable foo.exe is used for stand-alone execution,
whereas functions in fooml.exe are called interactively from Mathematica via MathLink.

1.4 MathCode Type System
The MathCode type system allows the user to associate static type information with Math-
ematica variables and functions. This information is needed in order to generate efficient
code in strongly typed languages such as Fortran90. Future versions of MathCode may sup-
port inference of some type information, but the current version requires specification of
types for all variables and functions to be translated to Fortran90.

1. The .exe extension is also used under Unix systems such as Solaris, Linux, etc.

22 1.4 MathCode Type System
1.4.1 Dual Type System

Standard Mathematica is dynamically typed; thus types may change during execution. For
example a variable x may first be a symbol, next change into an expression and finally
change into a real floating-point number during evaluation. In order to constrain dynamical-
ly changing types at run-time, Mathematica provides pattern-matching constructs. For ex-
ample: to only allow certain dynamic types of arguments when a function foo is called:

foo[x_Real, y_Integer] := ...

The function foo above can only be called with the first argument being a floating-point val-
ue and the second an integer value. It cannot be called, for example, for variables which are
still symbols, in which case the full expression is returned in unevaluated form.

On the other hand, in a static type system, one would like to express that a variable
always has the static type Real even though it can be represented by a symbol, expression,
or floating-point value. This is especially relevant for compiling to statically typed
languages and for static type checking. Another need for static types is for user-defined
types; for example a variable could have a static type Voltage even though it has a real
value and would have matched the head Real in Mathematica.

Thus, to handle both needs we must a dual type system where we can express both
dynamic and static types. We describe below how to declare static types as an extension of
the existing dynamic type system in Mathematica.

1.4.2 Basic Types

The following basic types are supported by the current version of MathCode:

Integer, Real,

The Real type corresponds to IEEE double precision floating point types in generated code.
Support for the following additional basic types is not yet implemented (except for a rudi-
mentary support for String and Boolean, as specified in Appendix A):

Complex,Boolean, String

1.4.3 Declarations

The types of global variables can be declared as follows:

Declare[
 Real r1,
 Integer i2 = 3,

1.4 MathCode Type System 23
 Integer i3
]

For convenience and compatibility in notation with most programming languages, one or
more space characters are used to separate the type prefix1 from the variable name.

Several Declare[] declarations may appear within the same Mathematica package
and can be evaluated interactively. Local variables are declared in a similar fashion, but
within the standard curly braces {} in a Module[], Block[] or With[] body of a function
definition:

... := Module[
{
 Integer n,
 Real {y,z,w},
 Real w2,
 Integer i = 1,
 Integer j= 0
},
 y = x+i+j;
 y
]

Declared variables can be initialized by some initialization expression, just as in standard
Mathematica. Initialization expressions for local variables are evaluated when the corre-
sponding function is called, whereas initialization and allocation of global variables is per-
formed when the Declare[] statement is evaluated, or optionally at a later point in time
by a special initialization function.

1.4.4 Function Signatures

A function signature is the set of properties that uniquely identifies a specific function. Usu-
ally the signature is the function name and the number and types of input and output argu-
ments. Function signatures of statically typed Mathematica functions are integrated into the
function definitions, or can be provided in a separate Declare statement. The integration
of function signatures into function definitions has been made possible by an extension of
the standard := and -> operators. This does not change the behavior or performance of the
Mathematica functions, when executed interpretively within Mathematica, and is thus com-
pletely backwards compatible. The syntax has the following structure:

1. Attaching the type in front of the variable is represented as a kind of prefix operator in
the Mathematica FullForm internal representation.

24 1.4 MathCode Type System
func[type1 x1, ..., typen xn]-> ftype := ...

Both static types and “dynamic types” can be specified, as in:

func[statictype x1_dynamictype1,...]->ftype := ...

The static type is only needed for code generation and does not influence the interpreted
function definition within Mathematica, whereas the dynamic type is the traditional Mathe-
matica pattern construct. For example, the function vfunc below will only match Real
number arguments during execution in Mathematica:

vfunc[Voltage x1_Real,...]->Voltage := ...

Multiple function results are allowed and specified as such:

func[...]->{ftype1,...,ftypen} := ...

An example with one function result:

mytan[Real x_]->Real := Sin[x]/Cos[x];

An example with two results:

sinandcos[Real x_]->{Real,Real} := {Sin[x],Cos[x]};

When adding static type information to existing untyped Mathematica code, it may be more
convenient to use the Declare method, as below, where the type information is provided
separately:

Declare[mytan[Real x_]->Real];

mytan[x_]:=Sin[x]/Cos[x];

Apart from the function signatures, the types for the local variables are also needed in order
to have full type information for a function. The keyword Declare[] can be used to specify
both function signatures and types for local variables. The example below with a Declare
statement combined with a function declaration, e.g.:

Declare[myfunc[Integer x_, Real y_]->Real, {Real, Integer}]

myfunc[x_,y_] := Module[{myreal, myint}, ...

gives the same result as:

1.4 MathCode Type System 25
myfunc[Integer x_, Real y_]->Real := Module[{
 Real myreal,
 Integer myint
}, ...

1.4.5 Arrays and Lists

A key data structure in Mathematica is the list structure. Nested list structures are commonly
used to represent matrices and other arrays. For example, a nested list
{{2.1,3.1},{2.2,3.2}} is a two by two array of real numbers. The type of such (nest-
ed) list structures can be specified by array type declarations, as long as they have a matrix-
like shape and are homogenous, i.e. all elements have the same type.

It is interesting to note that Mathematica internally implements lists as arrays. This has
the advantage of providing constant time indexing operations.

Basic Array Static Type Definition

Array types are represented by a type name parameterized by one or more dimension size
specifiers:

type[size1,...,sizen]

Global array variables can be declared as below:

Declare[
 type[size1,...,sizen] arr
]

Examples

A type for a three dimensional array of real numbers:

Real[3,6,4]

Such an array could be declared as follows:

Declare[Real[3,6,4] arr]

The sizes of array dimensions can be specified by values of integer variables, e.g. n and m
below:

Integer[n,m]

26 1.4 MathCode Type System
Unspecified Dimension Sizes

Typically, the sizes of arrays passed as function parameters or returned from a function are
not known until the function is executed. Such unspecified array-dimension sizes are indi-
cated by the underscore (_) unnamed dimension placeholder or (ident_) named dimension
placeholder. The actual values of dimension sizes may, however, be accessed later at runt-
ime. This new use of underscore is only valid within array type specifiers, as shown below:

type[_,_]

Named Dimension Placeholders

Named dimension placeholders like n_ make it possible to express that the sizes of several
dimensions are equal, as with square matrices. Such dimension placeholder names are local
to the function where the type is used.

type[n_,n_]

This will give rise to a local variable n, which is initialized to the size of the array dimension
as defined by the first occurrence of n. This variable can, for example, be used to declare
local arrays of the same size.

Array Sizes in Function Signatures

Named dimension placeholders make it possible to express array-dimension size constraints
in function signatures. For example, the following function signature is used for a matrix
multiplication function, which multiplies two matrix parameters amat and bmat.

MatrixMult[Real[n_,k_] amat_, Real[k_,m_] bmat_] -> Real[n,m] :=
...

This means that the dimension size parameters n, k, m are set to the dimension sizes of the
input array arguments, and can be used in the function body or to specify output matrix type.
No actual check is performed to verify that the second dimension of amat is equal to the
first dimension of bmat

Dimension Sizes of Array Parameters

Finding the dimension sizes at run time, e.g. for a function array parameter mat, can be done
simply by placing named dimension size placeholders in the input array type specifying
those sizes. The placeholder variables can later be used for declaring the local array local-
mat:

1.5 Compilation to Fortran90 code 27
func[Real[n_,m_] mat_]->Real := Module[{
 Real[n,m] localmat
},
 ...
]

The sizes given for the output type are currently for documentation purposes only; no actual
checking is performed.

Initialization of Arrays in Declarations

Matrices can be initialized by a constant matrix, or elementwise by a scalar. Elementwise
initialization of a matrix by a scalar constant (general expressions currently not allowed) can
be done, for example, as below for locally or globally declared variables:

Real[2,3] mat = 5.0

which gives mat the following contents:

 {{5.,5.,5.},
 {5.,5.,5.}}

Initialization by a constant matrix can be done as follows:

Real[3,3] mat2 = { {1., 2., 3.},
 {2., 3., 4.},
 {3., 4., 5.} }

1.5 Compilation to Fortran90 code
MathCode provides facilities to compile statically typed Mathematica functions and vari-
ables to Fortran90 code. Functions always reside in some package (or to be more precise,
always in some context). If no package has been specified by the user, the default package
Global is usually used. The compiler is invoked by calling CompilePackage. There are
essentially two ways to compile functions:
• Straight compilation of the code as it is
• Compilation combined with symbolic evaluation

The second way is used primarily to handle symbolic operations, e.g. symbolic integration,
simplification, substitution etc. which may be present in the function body to be compiled.

The default method of compiling typed functions is by straight compilation.
Compilation with symbolic evaluation is used for functions mentioned in the list of names

28 1.5 Compilation to Fortran90 code
to the optional parameter EvaluateFunctions, and should only be used for functions
which contain symbolic operations, or when symbolic evaluation leads to increased
performance.

1.5.1 Calling the Code Generator

CompilePackage

The code generation is started by the command CompilePackage, e.g.:

CompilePackage["foo"]

or

CompilePackage["foo‘"]

which collects the variables and functions defined in the package context foo‘, i.e. corre-
sponding to the symbols returned by:

Names["foo‘*"]

All MathCode functions that take a package name as argument, can be called with or without
the backtick, as in the example above. By default, MathCode compiles all typed functions
and typed global variables within the package. Typed functions and global variables are
those to which MathCode type information has been added, either together with their decla-
ration or in a separate Declare statement.

SetCompilationOptions

Additional information needed to guide the compilation process can be specified using op-
tional parameters to CompilePackage, or by inserting calls to SetCompilationOp-
tions within the package to be compiled.

Below we briefly examine the different items to be compiled and some of the available
options.

Compiling Different Items

Variable Declarations

All typed global variables declared in Mathematica to be compiled (e.g. within the package
foo) are translated to declarations in Fortran90. Declarations and possible initialization
code are put into the file foo.f90.

1.5 Compilation to Fortran90 code 29
Functions

The default is to translate typed Mathematica functions into Fortran90 without any sym-
bolic evaluation. This produces target code similar to the original Mathematica code, i.e.
loops in Mathematica become loops in Fortran90, if-statements are still if-statements, etc.

Functions With Symbolic Operations

Functions which contain symbolic operations cannot be directly translated to Fortran90.
Fortunately, in many cases symbolic operations can be eliminated by symbolic expansion.
In this way, symbolic operations such as symbolic integration, derivation, series expansion
etc. can be performed by Mathematica before the final code generation stage. The resulting
expression, which is assumed to contain only non-symbolic operations, is then passed to the
code generator which performs common subexpression elimination to speed up and reduce
the code size before finally translating to Fortran90 code. For this to work reliably, the body
of the “symbolic function” should not contain side effects such as assignments to global
variables or input/output. Neither should it contain loop constructs such as While, For etc.

For example, the function below contains a symbolic series expansion and a symbolic
substitution:

SymbSeriesSin[Real y_]->Real := Series[Sin[x],{x,0,10}] /. x->y;

Therefore, the function should be symbolically evaluated before final code generation, and
it should be specified as a function for symbolic evaluation using the option Evaluate-
Functions:

SetCompilationOptions[EvaluateFunctions->{"SymbSeriesSin"}]

Main Program Function

In case a stand-alone executable should be created, the option MainFileAndFunction can
be used to specify the program part needed in such an executable. The argument string
specifies the text from which the file foomain.f90 is created (assuming the package name
is foo). In the example below the function f is called and the result is printed by the pro-
gram.

SetCompilationOptions[MainFileAndFunction->
 "PRINT *, f(5)"]

1.5.2 Building

The building process compiles all produced Fortran90 files and links them into an execut-

30 1.5 Compilation to Fortran90 code
able.

MakeBinary

MakeBinary["foo"]

The call MakeBinary["foo"] builds all the files for either the stand-alone version of the
application (e.g. foo.exe), or for the interactively callable MathLink version (e.g.
fooml.exe).

BuildCode

BuildCode["foo"]

The call BuildCode["foo"] calls CompilePackage["foo"] and then
MakeBinary["foo"]. For example, a call to BuildCode["foo"] will make a complete
code generation, compilation and linking of the Mathematica package “foo”. As mentioned
earlier, the backtick is allowed as used in package context specifications in Mathematica:

BuildCode["foo`"]

1.5.3 Installing

For compiled functions to be directly callable from within Mathematica, the code must be
installed.

InstallCode

The call:

InstallCode["foo"]

or, equivalently,

InstallCode["foo`"]

installs the binary fooml.exe into Mathematica. It first saves (in the Mathematica work-
space, to be restored if uninstalled) the original interpreted functions and then creates func-
tion definition stubs out of the compiled package in Mathematica. This enables the calling
of compiled functions from within Mathematica via MathLink.

1.6 Matrix Operations 31
1.5.4 Executing

Functions in the compiled and installed package can be executed by standard function calls
just like functions in any standard Mathematica package. If stand-alone execution is desired,
simply run the created stand-alone executable (which does not have an ml suffix in its
name).

1.5.5 Uninstalling

When the compiled code is no longer to be accessible and the MathLink connection is to be
closed down, UninstallCode should be called:

UninstallCode["foo"]

This will restore the original interpreted version of the package, (called foo in the exam-
ple).

1.6 Matrix Operations
In many engineering applications, matrices and matrix manipulation are very common. The
availability of an easy-to-use and short-handed notation for manipulating matrices is impor-
tant for these application domains. Thus, we have extended the Part ([[]]) operation in
Mathematica to fulfill this objective.

The current basic set of matrix operations consists of operations on array sections. The
syntax is inspired by the syntax used by Matlab and Fortran 90, and is supported by the
MathCode code generator for up to 4-dimensional arrays and within Mathematica for an
arbitrary number of dimensions.

As an example, create a small matrix A containing indexed symbols of the form a[i,j]:

A=Table[a[i,j],{i,4},{j,5}]; A//MatrixForm

 { {a[1,1], a[1,2], a[1,3], a[1,4], a[1,5]},
 {a[2,1], a[2,2], a[2,3], a[2,4], a[2,5]},
 {a[3,1], a[3,2], a[3,3], a[3,4], a[3,5]},
 {a[4,1], a[4,2], a[4,3], a[4,4], a[4,5]} }

Below we extract row 2 and 3, using the Matlab-style notation A[[2|3,_]].
Compared to the standard Matlab syntax A(2:3,:) we have made a Mathematica

compatible version by replacing colon as a binary range operator with vertical bar (|), and
replacing colon as a placeholder for the whole range of a dimension with underscore (_).

32 1.7 Implementing Missing Mathematica Functions
A[[2|3,_]] // MatrixForm

 { {a[2,1], a[2,2], a[2,3], a[2,4], a[2,5]},
 {a[3,1], a[3,2], a[3,3], a[3,4], a[3,5]} }

Extract all but the first two columns, using A[[_, 3|_]] which corresponds to standard
Matlab syntax A(:,3:). The notation 3|_ here means the range from the 3rd to the last col-
umn.

A[[_,3|_]]//MatrixForm

 {{a[1,3], a[1,4], a[1,5]},
 {a[2,3], a[2,4], a[2,5]},
 {a[3,3], a[3,4], a[3,5]},
 {a[4,3], a[4,4], a[4,5]} }

Assign values to a submatrix of A:

A[[2|3,2|3]] = {{1,2},
 {3,4}};

A // MatrixForm

 { {a[1,1], a[1,2], a[1,3], a[1,4], a[1,5]},
 {a[2,1], 1, 2, a[2,4], a[2,5]},
 {a[3,1], 3, 4, a[3,4], a[3,5]},
 {a[4,1], a[4,2], a[4,3], a[4,4], a[4,5]} }

1.7 Implementing Missing Mathematica Functions
The MathCode system directly supports translation of a set of basic Mathematica

functions and operations, as defined in Appendix A. There are still quite a number of
standard Mathematica functions not yet included in this set.
•

Standard functions can be re-implemented by hand.

1.7.1 An Example systemF90.nb Notebook

This particular notebook system.nb contains an example system package (note lower-
case!) with an alternative implementation of the standard function RotateLeft, which ear-
lier was not in the standard subset supported by the MathCode translator.

1.7 Implementing Missing Mathematica Functions 33
Initialization Needed to use MathCode

Needs["MathCode‘"]

Package Header

BeginPackage["system‘",{MathCodeContexts}]

Public Exported Global Symbols

Begin["system‘"];
Off[General::shdw]

Introduce symbols that should be exported outside the package (there exist some other sym-
bols in this package as well).
system`RotateRight;

End Public Section

On[General::shdw] (* avoid shadowing messages from Mathematica *)
End[];

Private Implementation Section

Begin["‘Private‘"];

Define implementations of the functions and variables.

RotateRight

Definition of RotateRight for integer vectors:
RotateRight[Integer[_] a_]->Integer[_] :=
Module[{
 Integer m=Dimensions[a][[1]]
 },
 Module[{
 Integer[m] res
 },
 res[[2|m]]=a[[1|m-1]];
 res[[1]]=a[[m]];
 res

34 1.8 Interfacing With External Libraries
]];

End of Private Section

End[];

End of Package

EndPackage[];

Compiling

Compile the system package into Fortran90 code:

CompilePackage["system"];

Building

Compile the Fortran90 files to binaries and possibly link into an executable:

MakeBinary["system"];

Install and Test

InstallCode["system"];

RotateRight test example.

RotateRight[{1,2,3,4}]=={4, 1, 2, 3}]
True

Note that the MathCode compiled version of system`RotateRight is executed (via
MathLink) because it is earlier in the context path than the Mathematica built-in function
RotateRight.

1.8 Interfacing With External Libraries
This option is not implemented in the current version of MathCode F90.

1.9 MathCode Limitations 35
1.9 MathCode Limitations
The main limitation of MathCode is of course that it cannot compile the full Mathematica
language. The compilable subset is defined in Appendix A. This subset will grow in future
releases of MathCode, but will never include the full Mathematica language since that
would entail a complete reimplementation of most of Mathematica.

36 1.9 MathCode Limitations

1.9 MathCode Limitations 37
Chapter 2 Getting Started by Examples

The purpose of this chapter is to walk through some aspects of the MathCode system by
showing complete application examples in order to help the user become acquainted with
some of the type and code generation facilities. Recall that a very simple example of the use
of MathCode has already been presented in Section 1.2 at the beginning of Chapter 1. The
two examples in this chapter are slightly more advanced, showing the use of packages, sym-
bolic expansion and array slices.

The following applications will be presented below:

• SinSurface, which computes and plots a Sin-like surface function on a 2D grid, using
symbolic series expansion to create the symbolic expression which is the body of the
surface function.

• Gauss, which solves a linear equation system by a textbook Gauss elimination
algorithm, programmed using both for-loops and Matlab-like array slice matrix
operations.

Additional examples can be found in the DemosF90 directory of the MathCode distribution.
The performance of the generated code is measured for the presented applications. The

performance figures shown have been obtained for Mathematica 5.0 for Windows. You
should re-run these examples to obtain the correct performance figures for your platform;
when running MathCode compiled applications it is particularly the speedup figures which
vary between platforms.

This description is valid for execution under Windows95/98/NT/2000/XP.
Other facilities, such as type declarations and array slice operations, work on all

Mathematica supported platforms.
In order to run the system, there must be a valid Mathematica license on your computer.

Also, you must have installed the MathCode system. See installation description in Chapter
9.

38 2.1 Compilation and Code Generation
2.1 Compilation and Code Generation
As briefly mentioned in the introductory overview chapter, there are several options con-
cerning the compilation and code-generation facilities provided by MathCode for translation
of typed Mathematica code:

• Target code. Specifies which type of code should be produced. Currently, only C++ or
Fortran90 code generation is supported, depending on whether MathCode C++ or
MathCode F90 is installed on your computer.

• Execution integration. The compiled code can either be directly callable from within
Mathematica, or simply be placed in an external file.

• Symbolic expansion. The Mathematica code may contain symbolic operations which
should be evaluated and expanded in conjunction with code generation.

These options are explained in more detail in Chapter 7 which covers code generation. In
this chapter we present a few small application examples which illustrate some of these as-
pects.

To use typed declarations and code-generation facilities for functions and data structures
in your own package, you always need to refer to the MathCode application by evaluating a
Needs statement:

Needs["MathCode‘"]

In order to invoke code-generation functions from within your package, you also need to in-
clude the MathCode contexts in the search path of your package, as below:

BeginPackage["myPackage‘",{MathCodeContexts,...}]

2.2 Two Modes of Code Generation
The first example application is a rather contrived small Mathematica program called Sin-
Surface, which is designed to illustrate the two basic modes of the code generator: compila-
tion without symbolic evaluation, which is default, and compilation preceded by symbolic
expansion, which is indicated by setting the option EvaluateFunctions (see Section
2.3.5).

• Standard code generation. This is the default for generating procedural code from a
typed Mathematica function. The function body is translated, e.g. to Fortran90, as it is,
without applying any symbolic transformations. Such a function may only contain non-
symbolic operations, typically numeric computations over arrays and scalars. When
translating to external code, e.g. in Fortran90, emitted code will be rather close to the

2.2 Two Modes of Code Generation 39
original Mathematica code in structure.
• Code generation preceded by symbolic evaluation. This is used to generate code from a

function that may contain symbolic operations, e.g. series expansion, symbolic
integration, symbolic derivation, etc. It is not useful to perform such symbolic
operations in languages like C++ or Fortran90, so they are therefore performed in
Mathematica before the final translation.

The symbolic operations result in expressions that should contain only non-
symbolic, typically numeric operations. This is typically the case since Mathematica
always evaluates as far as possible. Thus, the function body is expanded (and simplified)
into a usually huge symbolic expression before being transformed into Fortran90 code,
for example. The result is rather unrecognizable compared to the original Mathematica
function since both symbolic expansion and optimizations such as common
subexpression elimination have been performed.

The following two sections present the actual application examples.

40 2.3 The SinSurface Application Example
2.3 The SinSurface Application Example
Below we describe the SinSurface program example. It is structured as a standard Mathe-
matica package within a notebook file SinSurface.nb. The actual computation is per-
formed by the functions calcPlot, sinFun2 and their help functions.

The two functions calcPlot and sinFun2 in the SinSurface package will be translated
to Fortran90 together with the declaration of the global array xyMatrix.
• The array xyMatrix represents a 21x21 grid on which the numeric function sinFun2

will be computed.
• The function calcPlot accepts four arguments which are coordinates that describe a

square in the x-y plane, and one counter (iter) to make the function repeat the
computation as many times as necessary for measuring execution time. For each point
on a 21x21 grid in that square, the numeric function sinFun2 is called to compute a
value that is stored as a matrix element in the matrix representing the grid.

• The function sinFun2 computes essentially the same values as Sin[x+y], but in a
more complicated manner. This function uses a rather large expression obtained through
conversion of the arguments into polar coordinates (through arcTan) and then uses
series expansion of both Sin and Cos in 10 terms. The resulting large symbolic
expression (more than a page) becomes the body of sinFun2, and is then used as input
to CompilePackage[] with the EvaluateFunction option (see Section 7.5) to
generate efficient Fortran90 code.

2.3.1 Introduction

The SinSurface example application computes a function (here sinFun2) over a 2-D grid.
The function values are first stored in the matrix xyMatrix before being plotted. The exe-
cution of compiled Fortran90 code for the function sinFun2 is approximately 1000 times
faster than evaluating the same function interpretively within Mathematica.

To run this example, start Mathematica, open the notebook file “SinSurface.nb”, and
either evaluate it cell by cell or all at once.

2.3.2 Initialization

Check Current Directory

Check the current directory, since a number of files will be placed there during the code-
generation process. This particular example shows directories from a computer with the
Windows platform.

2.3 The SinSurface Application Example 41
Directory[]
"C:\MathCode\DemosF90\SinSurface\"

You might want to place the directory somewhere where all generated files are put, e.g. the
directory below, or another location.

SetDirectory["C:\MathCode\DemosF90\SinSurface\"]
"C:\MathCode\DemosF90\SinSurface\"

2.3.3 Start of the SinSurface Package

First give a Needs statement, to make sure that the MathCode application is loaded:

Needs["MathCode‘"]

The SinSurface package starts in the usual way by a BeginPackage declaration which
references other packages. The MathCodeContexts variable is needed in order to call the
code-generation related functions.

BeginPackage["SinSurface‘", {MathCodeContexts}];
Clear["SinSurface‘*"];

Exported Symbols

Define possibly exported symbols. Even though it is not necessary here, we enclose these
names within a Begin["SinSurface‘"] ... End[] type of “context bracket”, since this
can be put into a cell in the notebook and conveniently re-evaluated (only this cell!) if new
names are added to the list below.

Begin["SinSurface‘"]
 xyMatrix;
 calcPlot;
 sinFun1;
 sinFun2;
 arcTan;
 sin;
 cos;
 plot;
 cplus;
 plotfile;
End[]

42 2.3 The SinSurface Application Example
Setting Compilation Options

This defines how the functions and variables in the SinSurface package should be compiled
to Fortran90. By default, all typed variables and functions are compiled. However, the
compilation process can be controlled in a more detailed manner by giving compilation op-
tions to CompilePackage or via SetCompilationOptions. For example, in this pack-
age the function sinFun2 should be symbolically evaluated before being translated to code
since it contains symbolic operations; the functions sin, cos, and arcTan should not be
compiled at all since they are expanded within the body of sinFun2. The remaining typed
function, calcPlot, will be compiled in the normal way.

SetCompilationOptions[
 EvaluateFunctions->{sinFun2},
 UnCompiledFunctions->{sin,cos,arcTan},
 MainFileAndFunction->""
]

2.3.4 The Body of the SinSurface Package

Begin with the implementation section of the SinSurface package, where functions are de-
fined. This is usually private to avoid accidental name shadowing due to identical local vari-
ables in several packages.

Begin["SinSurface‘Private‘"];

2.3.5 Functions and Declarations to be Translated to Fortran90

Global Variables

Declare public global variables and private package-global variables:

Declare[
 Real[21,21] xyMatrix
];

sin, cos

Taylor-expanded sin and cos functions called by sinFun2. In the normal order of eval-
uation of function Sin[] the actual parameter is replaced, Sin[] is evaluated and series
expansion is performed. To reorder this sequence of operations, z must be substituted with
x after the series expansion.

2.3 The SinSurface Application Example 43
sin[Real x_]->Real := Normal[Series[Sin[z], {z,0,10}]]
 /. z -> x ;
cos[Real x_]->Real := Normal[Series[Cos[z], {z,0,10}]]
 /. z -> x ;

arcTan

Conversion of grid point to an angle, called by sinFun2.

arcTan[Real x_, Real y_]->Real := (
 If[x < 0, Pi, 0] + If[x == 0, Sign[y]*Pi/2, ArcTan[y/x]]
);

sinFun2

The function sinFun2 is the function to be computed and plotted, called by calcPlot. It
provides a more complicated and computationally heavier way (series expansion) to calcu-
late approximately the same result as Sin[x+y]. This gives an example of a combination
of symbolic and numeric operations as well as a rather standard mix of arithmetic opera-
tions. The expanded symbolic expression which comprises the body of SinFun2 is between
1 and 2 pages long when printed.

Note that the types of local variables to sinFun2 need not be declared since setting the
EvaluateFunctions option will make the whole function body symbolically expanded
before translation to Fortran90 code.

Note also that in order for a function to be symbolically expanded before final code
generation it should be without side effects, e.g. no assignment to global variables or input/
output. This is because the relative order between these actions when executing the code
often changes when the symbolic expression is created and later rearranged and optimized
by the code generator.

sinFun2[Real x_, Real y_]->Real := Block[
 {
 Real {r,xx,yy}
 },
 r = Sqrt[x^2+y^2];
 xx = r*cos[arcTan[x,y]];
 yy = r*sin[arcTan[x,y]];
 sin[xx+yy]
];

44 2.3 The SinSurface Application Example
calcPlot

The function calcPlot calculates data for a plot of sinFun2 over a 21x21 grid, which is
returned as a 21×21 array.

calcPlot[Real xmin_, Real xmax_, Real ymin_,
 Real ymax_, Integer iter_] -> Real[21,21] :=
 Module[{
 Integer n = 20,
 Real {x,y},
 Integer {i,j,count}
 },
 For[count=1,count<=iter,count=count+1,
 For[i=1, i<=(n+1), i=i+1,
 For[j=1, j<=(n+1), j=j+1,

 x = xmin+(xmax-xmin)*(i-1)/n;
 y = ymin+(ymax-ymin)*(j-1)/n;
 xyMatrix[[i,j]] = sinFun2[x,y]

]
]
];
 xyMatrix
];

End of SinSurface Package

End[];
EndPackage[];

2.3.6 Execution

We first execute the application interpretively within Mathematica, and then compile the
key function and execute the application again. Next we compile the application to
Fortran90, build an executable, and call the same functions from Mathematica via Math-
Link.

Mathematica Evaluation

Let Mathematica calculate a plot.

meval = Timing[plot = calcPlot[-2., 2., -2., 2., 1]][[1]]
0.672 Second

2.3 The SinSurface Application Example 45
Perform the plot:

ListPlot3D[plot];

Figure 2.1: Plot of the 21×21 grid in the SinSurface example.

Using Mathematica Standard Compile[]

We redefine sinFun2 to become a compiled version, using Mathematica standard Com-
pile[]:

sinFun2 = Compile[{x, y}, Evaluate[sinFun2[x, y]]];

compeval = Timing[plot = calcPlot[-2., 2., -2., 2., 1];]
{0.078 Second,Null}

compeval = compeval[[1]];
sinFun2 =.

2.3.7 Using the MathCode Code Generator

Compile the SinSurface package:

CompilePackage["SinSurface"]

Successful compilation to Fortran90: 2 function(s)

46 2.3 The SinSurface Application Example
The Generated Fortran90 Code

The generated Fortran90 code from the SinSurface program follows below. Notice that
the package name is used to create a Fortran90 module. Thus the Mathematica package
SinSurface becomes mc_SinSurface in Fortran90.

The generated code from SinSurface‘sinFun2 is produced from a large expression
by the EvaluateFunctions option. Therefore, common subexpression elimination is
performed by the code generator, producing many temporary variables and subexpressions
which can be seen in the body of the Fortran90 function sinFun2.

By contrast, the Fortran90 code in the body of function calcPlot produced from the
Mathematica function SinSurface‘calcPlot, without being specified by the
EvaluateFunctions option, follows the structure of the original code quite closely.

We give a command to type out the text of the generated Fortran90 file:

!!SinSurface.f90

The generated SinSurface.f90 file is included below. Note that the exact appearance of
this file is very dependent on the exact MathCode version and may differ slightly on your
system.

module mc_SinSurface

 use MathCodePrecision
 use MathCodeSheep
 implicit none

 real(mc_real) xyMatrix(21,21)

contains

 function calcPlot(xmin, xmax, ymin, ymax, iter) result(mc_O1)

 use MathCodePrecision
 use MathCodeSheep
 implicit none
 real(mc_real), intent(in) :: xmin
 real(mc_real), intent(in) :: xmax
 real(mc_real), intent(in) :: ymin
 real(mc_real), intent(in) :: ymax
 integer(mc_int), intent(in) :: iter
 real(mc_real), pointer :: mc_O1(:,:)
 integer(mc_int) count
 integer(mc_int) j

2.3 The SinSurface Application Example 47
 integer(mc_int) i
 real(mc_real) y
 real(mc_real) x
 integer(mc_int) n

 n = 20

 count = 1
 do while (count <= iter)

 i = 1
 do while (i <= n+1)

 j = 1
 do while (j <= n+1)
 x = xmin+(((xmax+(-xmin))*(i+(-1)))/n)
 y = ymin+(((ymax+(-ymin))*(j+(-1)))/n)
 xyMatrix(j, i) = sinFun2 (x, y)

 j = j+1

 end do

 i = i+1

 end do

 count = count+1

 end do
 if (associated(mc_O1)) nullify(mc_O1)
 allocate(mc_O1(21, 21))
 mc_O1 = xyMatrix
 end function calcPlot

 subroutine SinSurfaceInit()

 use MathCodePrecision
 use MathCodeSheep
 implicit none
 end subroutine SinSurfaceInit

 function sinFun2(x, y) result(mc_O1)

48 2.3 The SinSurface Application Example
 use MathCodePrecision
 use MathCodeSheep
 implicit none
 real(mc_real), intent(in) :: x
 real(mc_real), intent(in) :: y
 real(mc_real) mc_O1
 real(mc_real) mc_T1
 real(mc_real) mc_T2
 real(mc_real) mc_T3
 real(mc_real) mc_T4
 real(mc_real) mc_T5
 logical mc_T6
 integer(mc_int) mc_T7
 real(mc_real) mc_T8
 real(mc_real) mc_T9
 real(mc_real) mc_T10
 real(mc_real) mc_T11
 real(mc_real) mc_T12
 logical mc_T13
 real(mc_real) mc_T14
 real(mc_real) mc_T15
 real(mc_real) mc_T16
 real(mc_real) mc_T17
 real(mc_real) mc_T18
 real(mc_real) mc_T19
 real(mc_real) mc_T20
 real(mc_real) mc_T21
 real(mc_real) mc_T22
 real(mc_real) mc_T23
 real(mc_real) mc_T24
 real(mc_real) mc_T25
 real(mc_real) mc_T26
 real(mc_real) mc_T27
 real(mc_real) mc_T28
 real(mc_real) mc_T29
 real(mc_real) mc_T30
 real(mc_real) mc_T31
 real(mc_real) mc_T32
 real(mc_real) mc_T33
 real(mc_real) mc_T34
 real(mc_real) mc_T35
 real(mc_real) mc_T36
 real(mc_real) mc_T37
 real(mc_real) mc_T38

2.3 The SinSurface Application Example 49
 real(mc_real) mc_T39
 real(mc_real) mc_T40
 real(mc_real) mc_T41
 real(mc_real) mc_T42
 real(mc_real) mc_T43
 real(mc_real) mc_T44
 real(mc_real) mc_T45
 real(mc_real) mc_T46
 real(mc_real) mc_T47
 real(mc_real) mc_T48
 real(mc_real) mc_T49
 real(mc_real) mc_T50
 real(mc_real) mc_T51
 real(mc_real) mc_T52

 mc_T1 = x**2
 mc_T2 = y**2
 mc_T3 = mc_T1+mc_T2
 mc_T4 = real(1)/2
 mc_T5 = mc_T3**mc_T4
 mc_T6 = x == 0
 mc_T7 = sign(1.0D0, y)
 mc_T8 = 3.1415926535897932_mc_real*mc_T7
 mc_T9 = mc_T8/2
 mc_T10 = y/x
 mc_T11 = atan(mc_T10)
 if (mc_T6) then
 mc_T12 = mc_T9
 else
 mc_T12 = mc_T11
 end if
 mc_T13 = x < 0
 if (mc_T13) then
 mc_T14 = 3.1415926535897932_mc_real
 else
 mc_T14 = 0
 end if
 mc_T15 = real((-1))/6
 mc_T16 = mc_T12+mc_T14
 mc_T17 = mc_T16**3
 mc_T18 = mc_T15*mc_T17
 mc_T19 = mc_T16**5
 mc_T20 = mc_T19/120
 mc_T21 = real((-1))/5040

50 2.3 The SinSurface Application Example
 mc_T22 = mc_T16**7
 mc_T23 = mc_T21*mc_T22
 mc_T24 = mc_T16**9
 mc_T25 = mc_T24/362880
 mc_T26 = mc_T12+mc_T14+mc_T18+mc_T20+mc_T23+mc_T25
 mc_T27 = mc_T5*mc_T26
 mc_T28 = real((-1))/2
 mc_T29 = mc_T16**2
 mc_T30 = mc_T28*mc_T29
 mc_T31 = mc_T16**4
 mc_T32 = mc_T31/24
 mc_T33 = real((-1))/720
 mc_T34 = mc_T16**6
 mc_T35 = mc_T33*mc_T34
 mc_T36 = mc_T16**8
 mc_T37 = mc_T36/40320
 mc_T38 = real((-1))/3628800
 mc_T39 = mc_T16**10
 mc_T40 = mc_T38*mc_T39
 mc_T41 = 1+mc_T30+mc_T32+mc_T35+mc_T37+mc_T40
 mc_T42 = mc_T5*mc_T41
 mc_T43 = mc_T27+mc_T42
 mc_T44 = mc_T43**3
 mc_T45 = mc_T15*mc_T44
 mc_T46 = mc_T43**5
 mc_T47 = mc_T46/120
 mc_T48 = mc_T43**7
 mc_T49 = mc_T21*mc_T48
 mc_T50 = mc_T43**9
 mc_T51 = mc_T50/362880
 mc_T52 = mc_T27+mc_T42+mc_T45+mc_T47+mc_T49+mc_T51
 mc_O1 = mc_T52
 end function sinFun2

end module mc_SinSurface

Compiling and Linking the Fortran90 Code

The command MakeBinary compiles the generated Fortran90 code using a Fortran90
compiler (e.g. Digital Visual Fortran). The object code is by default linked into the execut-
able: SinSurfaceml.exe for calling the compiled code via MathLink.

MakeBinary[];

2.3 The SinSurface Application Example 51
If any problems are encountered during code compilation, the warning and error messages
are shown in the notebook. Otherwise no messages are shown. When MakeBinary is called
without arguments, the call applies to the current package.

Installing and Connecting to Mathematica

The command InstallCode installs and connects the external process containing the com-
piled and linked SinSurface code.

InstallCode["SinSurface"]

Define an elapsed time-measurement function called AbsTime with a resolution of 1 sec-
ond:

SetAttributes[AbsTime,HoldFirst];

AbsTime[x_] := Module[{
 start,res
 },
 start = AbsoluteTime[];
 res=x;
 {(AbsoluteTime[]-start) Second,res}
];

Execution of generated Fortran90 Code

Perform the computation and the plot:

(plot = calcPlot[-2.0,2.0,-2.0,2.0,3000];) // AbsTime
{0.7816 Second,Null}

Since the external computation was performed 3000 times, the time needed for one external
computation is:

externaleval = %[[1]]/3000
0.0002603867 Second

Check that the result appears graphically identical:

ListPlot3D[plot];

52 2.3 The SinSurface Application Example
Figure 2.2: Plot of the SinSurface function computed by generated Fortran90 code.

2.3.8 Performance Comparison

The performances between the three forms of execution are compared in the table below.
The generated Fortran90 code for this example is roughly 2580 times faster than standard
interpreted Mathematica code, and almost 300 times faster than expression code compiled
by the internal Mathematica Compile[] command. This test is performed on a 2.6 Ghz
Pentium 4 running Windows XP, Mathematica 5.0, Digital Visual Fortran 6.0 .

Execution form Time consumed Relative
Standard Mathematica 0.672 2580.78.
Compile[] 0.078 299.555
External Fortran90 via Math-
Link

 0.0002603867 1.00

2.4 The Gauss Application Example 53
2.4 The Gauss Application Example
The Gauss application example uses a textbook Gauss elimination algorithm to solve a lin-
ear equation system. Two versions of the Gauss elimination algorithm are presented:

• GaussSolveArrayslice. This algorithm is largely coded using the Matlab-like array slice
operations.

• GaussSolveForLoops. This algorithm is coded using traditional for-loops.

Both versions of the algorithm are compiled to Fortran90 code. The performance is mea-
sured both with and without MathLink overhead.

2.4.1 The Gauss Package

Initialization of the Package

Needs["MathCode`"]

You might want to check which directory you are in and set where you want to be, since
some files are generated during the compilation process. You can use the $MCRoot variable
that points to the root directory of your MathCode installation.

SetDirectory[$MCRoot<>"/DemosF90/Gauss"]

Start the Package

BeginPackage["Gauss‘",{MathCodeContexts}];

Define Exported Symbols

Begin["Gauss‘"]
 GaussSolveArrayslice;
 GaussSolveForLoops;
End[]

Define the Functions and Variables

Begin the “private” implementation section:

Begin["‘Private‘"];

54 2.4 The Gauss Application Example
GaussSolveArrayslice

The GaussSolveArrayslice function

GaussSolveArrayslice[
 Real[n_,n_] ain_,
 Real[n_,m_] bin_ ,
 Integer iterations_]-> Real[n,m] :=
 Module[{
 Real[n] dumc,
 Real[n,n] a,
 Real[n,m] b,
 Integer[n] {ipiv, indxr, indxc},
 Integer {i,k,l,irow,icol},
 Real {pivinv, amax, tmp},
 Integer {beficol, afticol, count}
 },

 For[count=1,count<=iterations,count=count+1,(
 a=ain;
 b=bin;
 For [k=1,k<=n, k=k+1,
 ipiv[[k]]=0
];

 For [i=1,i<=n, i=i+1,
 (* Algorithm first finds absolutely largest matrix element *)
 amax=0.0;
 For [k=1,k<=n, k=k+1,
 If [ipiv[[k]]==0 ,
 For [l=1,l<=n, l=l+1,
 If [ipiv[[l]]==0 ,
 If [Abs[a[[k,l]]] > amax,
 amax= Abs[a[[k,l]]];
 irow=k;
 icol=l
]]]]];

 ipiv[[icol]]=ipiv[[icol]]+1;
 If[ipiv[[icol]]>1,
 Print["*** Gauss2 input data error ***"];
 Break];
 If[irow!=icol ,
 For [k=1,k<=n, k=k+1,

2.4 The Gauss Application Example 55
 tmp=a[[irow,k]] ;
 a[[irow,k]]=a[[icol,k]];
 a[[icol,k]]=tmp];
 For [k=1,k<=m, k=k+1,
 tmp=b[[irow,k]] ;
 b[[irow,k]]=b[[icol,k]];
 b[[icol,k]]=tmp]
];
 indxr[[i]]=irow;
 indxc[[i]]=icol;
 If [a[[icol,icol]]==0,
 Print["*** Gauss2 input data error 2 ***"];
 Break];

 pivinv=1.0 / a[[icol,icol]];
 a[[icol,icol]]=1.0;

 a[[icol,_]]=a[[icol,_]]*pivinv;
 b[[icol,_]]=b[[icol,_]]*pivinv;
 dumc=a[[_,icol]];
 For [k=1,k<=n, k=k+1, a[[k,icol]]=0];

 a[[icol,icol]]= pivinv;

 For [k=1,k<=n, k=k+1,
 If[k != icol,
 a[[k,_]]= a[[k,_]]- dumc[[k]]*a[[icol,_]];
 b[[k,_]]= b[[k,_]]- dumc[[k]]*b[[icol,_]]
]
]
];

 For [l=n,l>=1, l=l-1,
 For [k=1,k<=n, k=k+1,
 tmp= a[[k,indxr[[l]]]];
 a[[k,indxr[[l]]]]=a[[k,indxc[[l]]]];
 a[[k,indxc[[l]]]]=tmp
]]
)];
 b
];

56 2.4 The Gauss Application Example
GaussSolveForLoops

The GaussSolveForLoops function:

GaussSolveForLoops[
 Real[n_,n_] ain_,
 Real[n_,m_] bin_,
 Integer iterations_]-> Real[n,m] :=
 Module [{
 Real[n] dumc,
 Real[n,n] a,
 Real[n,m] b,
 Integer[n] {ipiv, indxr, indxc},
 Integer {i, k, l, irow, icol},
 Real {pivinv, amax, tmp},
 Integer {beficol, afticol, count}
 },
 For[count=1,count<=iterations,count=count+1,(
 a=ain;
 b=bin;
 For [k=1,k<=n, k=k+1,
 ipiv[[k]]=0
];

 For [i=1,i<=n, i=i+1,
 (* Algorithm first finds absolutely largest matrix element *)
 amax=0.0;
 For [k=1,k<=n, k=k+1,
 If [ipiv[[k]]==0 ,
 For [l=1,l<=n, l=l+1,
 If [ipiv[[l]]==0 ,
 If [Abs[a[[k,l]]] > amax,
 amax= Abs[a[[k,l]]];
 irow=k;
 icol=l
]]]]];

 ipiv[[icol]]=ipiv[[icol]]+1;
 If[ipiv[[icol]]>1,
 Print["*** Gauss2 input data error ***"];
 Break];
 If[irow!=icol ,
 For [k=1,k<=n, k=k+1,
 tmp=a[[irow,k]] ;

2.4 The Gauss Application Example 57
 a[[irow,k]]=a[[icol,k]];
 a[[icol,k]]=tmp];
 For [k=1,k<=m, k=k+1,
 tmp=b[[irow,k]] ;
 b[[irow,k]]=b[[icol,k]];
 b[[icol,k]]=tmp]
];
 indxr[[i]]=irow;
 indxc[[i]]=icol;
 If [a[[icol,icol]]==0,
 Print["*** Gauss2 input data error 2 ***"];
 Break];

 pivinv=1.0 / a[[icol,icol]];
 a[[icol,icol]]=1.0;

 For [k=1,k<=n, k=k+1,
 a[[icol,k]]=a[[icol,k]]*pivinv];
 For [k=1,k<=m, k=k+1,
 b[[icol,k]]=b[[icol,k]]*pivinv];
 For [k=1,k<=n, k=k+1,
 dumc[[k]]=a[[k,icol]];a[[k,icol]]=0];

 a[[icol,icol]]= pivinv;

 For [k=1,k<=n, k=k+1,
 If [k != icol,
 For [l=1,l<=n, l=l+1,
 a[[k,l]]= a[[k,l]]- dumc[[k]]* a[[icol,l]]];
 For [l=1,l<=m, l=l+1,
 b[[k,l]]= b[[k,l]]- dumc[[k]]* b[[icol,l]]]
]]
];

 For [l=n,l>=1, l=l-1,
 For [k=1,k<=n, k=k+1,
 tmp= a[[k,indxr[[l]]]];
 a[[k,indxr[[l]]]]=a[[k,indxc[[l]]]];
 a[[k,indxc[[l]]]]=tmp
]]
)];
 b
];

58 2.4 The Gauss Application Example
The Compiled GaussSolveForLoops function, using Compile[]
GaussSolveForLoopsC=
Compile[{{ain,_Real,2},{bin,_Real,2},{iterations,_Integer}},
Module[{
n=Dimensions[ain][[1]],
m=Dimensions[bin][[2]],
dumc=Table[0.0,{n}],
a=Table[0.0,{n},{n}],
b=Table[0.0,{n},{m}],
ipiv=Table[0,{n}],
 indxr=Table[0,{n}],
 indxc=Table[0,{n}],
 i=0, k=0, l=0, irow=0, icol=0,
 pivinv=0.0, amax=0.0, tmp=0.0,
 beficol=0, afticol=0, count=0
 },
For[count=1,count<=iterations,count=count+1,(
 a=ain; (* The arguments are always generated as const references
 and therefore cannot be changed.Actuall we get waste
 of space and time here when they are copied. *)
 b=bin;
 For [k=1,k<=n, k=k+1,ipiv[[k]]=0];
 For [i=1,i<=n, i=i+1,
 (* Algorithm first finds absolutely largest matrix element *)
 amax=0.0;
 For [k=1,k<=n, k=k+1,
 If [ipiv[[k]]==0 ,
 For [l=1,l<=n, l=l+1,
 If [ipiv[[l]]==0 ,
 If [Abs[a[[k,l]]] > amax,
 amax= Abs[a[[k,l]]];

 irow=k;
 icol=l
]]]]];

 ipiv[[icol]]=ipiv[[icol]]+1;
 If[ipiv[[icol]]>1,
 Print["*** Gauss2 input data error ***"];
 Break];
 If[irow!=icol ,

2.4 The Gauss Application Example 59
 For [k=1,k<=n, k=k+1,
 tmp=a[[irow,k]] ;
 a[[irow,k]]=a[[icol,k]];
 a[[icol,k]]=tmp];
 For [k=1,k<=m, k=k+1,
 tmp=b[[irow,k]] ;
 b[[irow,k]]=b[[icol,k]];
 b[[icol,k]]=tmp]
];
 indxr[[i]]=irow;
 indxc[[i]]=icol;
 If [a[[icol,icol]]==0,
 Print["*** Gauss2 input data error 2 ***"];
 Break];
 pivinv=1.0 / a[[icol,icol]];
 a[[icol,icol]]=1.0;
 For [k=1,k<=n, k=k+1,
 a[[icol,k]]=a[[icol,k]]*pivinv];
 For [k=1,k<=m, k=k+1,
 b[[icol,k]]=b[[icol,k]]*pivinv];
 For [k=1,k<=n, k=k+1,
 dumc[[k]]=a[[k,icol]];a[[k,icol]]=0];
 a[[icol,icol]]= pivinv;

 For [k=1,k<=n, k=k+1,
 If [k != icol,
 For [l=1,l<=n, l=l+1,
 a[[k,l]]= a[[k,l]]- dumc[[k]]* a[[icol,l]]];

 For [l=1,l<=m, l=l+1,
 b[[k,l]]= b[[k,l]]- dumc[[k]]* b[[icol,l]]]
]]
];
For [l=n,l>=1, l=l-1,
 For [k=1,k<=n, k=k+1,
 tmp= a[[k,indxr[[l]]]];
 a[[k,indxr[[l]]]]=a[[k,indxc[[l]]]];
 a[[k,indxc[[l]]]]=tmp
]])];
 b
]];

60 2.4 The Gauss Application Example
End of the Gauss Package

End of the package:

End[];
EndPackage[];

2.4.2 Executing the Interpreted Version in Mathematica

First we need to create two arrays to be used as input for the solver.

a=Table[Random[],{10},{10}];
b=Table[Random[],{10},{2}];

Run GaussSolveArrayslice

The loop time may be too short for reliable measurements. It is only 3- 4 seconds combined
with a resolution of 1 second. The relevant factor for a 1.5 GHz computer is 10.

factor=10;
loops=1*factor;

Call the solver:
s=(c=GaussSolveArrayslice[a,b,loops];)//Timing;
meval=s[[1]];
Print["TIMING FOR NON-COMPILED VERSION=",meval];

TIMING FOR NON-COMPILED VERSION= 0.1672 Second

Run the For-loop Version

Execute the version with for-loops:

s=(c=GaussSolveForLoops[a,b,loops];)//Timing;
mevalFor=s[[1]];
Print["TIMING FOR NON-COMPILED VERSION (FOR-LOOPS)=",mevalFor];

TIMING FOR NON-COMPILED VERSION (FOR-LOOPS)= 0.1094 Second

2.4.3 Generation of Fortran90 code

The command CompilePackage translates the package to Fortran90 code:

2.4 The Gauss Application Example 61
CompilePackage["Gauss"]
Successful compilation to Fortran90: 2 function(s)

The Produced Fortran90 Code for Gauss

To save space, we only show the Fortran90 code of the translated GaussSolveArray-
slice function (which in fact also contains a few for-loops). The actual code generated on
your system may differ slightly, as it is very dependent on the exact version of MathCode
used.

 function GaussSolveArraySlice(ain,bin,iterations) result(mc_O1)

 use MathCodePrecision
 use MathCodeSheep
 implicit none
 real(mc_real), intent(in) :: ain(:,:)
 real(mc_real), intent(in) :: bin(:,:)
 integer(mc_int), intent(in) :: iterations
 real(mc_real) mc_O1(SIZE(bin, 3-2),SIZE(ain, 3-1))
 integer(mc_int) count
 integer(mc_int) afticol
 integer(mc_int) beficol
 real(mc_real) tmp
 real(mc_real) amax
 real(mc_real) pivinv
 integer(mc_int) icol
 integer(mc_int) irow
 integer(mc_int) l
 integer(mc_int) k
 integer(mc_int) i
 integer(mc_int) indxc(SIZE(ain, 3-1))
 integer(mc_int) indxr(SIZE(ain, 3-1))
 integer(mc_int) ipiv(SIZE(ain, 3-1))
 real(mc_real) b(SIZE(bin, 3-2),SIZE(ain, 3-1))
 real(mc_real) a(SIZE(ain, 3-1),SIZE(ain, 3-1))
 real(mc_real) dumc(SIZE(ain, 3-1))
 integer(mc_int) m
 integer(mc_int) n

 m = SIZE(bin, 3-2)
 n = SIZE(ain, 3-1)

 count = 1
 do while (count <= iterations)

62 2.4 The Gauss Application Example
 a = ain
 b = bin

 k = 1
 do while (k <= n)
 ipiv(k) = 0
 k = k+1
 end do
 i = 1
 do while (i <= n)
 amax = 0.D0
 k = 1
 do while (k <= n)
 if (ipiv(k) == 0) then
 l = 1
 do while (l <= n)
 if (ipiv(l) == 0) then
 if (abs(a(l, k)) > amax) then
 amax = abs(a(l, k))
 irow = k
 icol = l
 end if
 end if
 l = l+1
 end do
 end if
 k = k+1
 end do
 ipiv(icol) = ipiv(icol)+1
 if (ipiv(icol) > 1) then
 PRINT *, "*** Gauss2 input data error ***"
 exit
 end if

 if (irow /= icol) then
 k = 1
 do while (k <= n)
 tmp = a(k, irow)
 a(k, irow) = a(k, icol)
 a(k, icol) = tmp
 k = k+1
 end do
 k = 1

2.4 The Gauss Application Example 63
 do while (k <= m)
 tmp = b(k, irow)
 b(k, irow) = b(k, icol)
 b(k, icol) = tmp

 k = k+1
 end do
 end if
 indxr(i) = irow
 indxc(i) = icol
 if (a(icol, icol) == 0) then
 print *, "*** Gauss2 input data error 2 ***"
 exit
 end if
 pivinv = 1.D0/a(icol, icol)
 a(icol, icol) = 1.D0
 a(:, icol) = a(:, icol)*pivinv
 b(:, icol) = b(:, icol)*pivinv
 dumc = a(icol, :)
 k = 1
 do while (k <= n)
 a(icol, k) = 0
 k = k+1
 end do
 a(icol, icol) = pivinv
 k = 1
 do while (k <= n)
 if (k /= icol) then
 a(:, k) = a(:, k)+((-dumc(k)*a(:, icol)))
 b(:, k) = b(:, k)+((-dumc(k)*b(:, icol)))
 end if
 k = k+1
 end do
 i = i+1
 end do
 l = n
 do while (l >= 1)
 k = 1
 do while (k <= n)
 tmp = a(indxr(l), k)
 a(indxr(l), k) = a(indxc(l), k)
 a(indxc(l), k) = tmp
 k = k+1
 end do

64 2.4 The Gauss Application Example
 l = l+(-1)
 end do
 count = count+1

 end do
 mc_O1 = b
 end function GaussSolveArraySlice

2.4.4 Building the Executable

Call MakeBinary to compile the generated Fortran90 code and build the executable(s).

MakeBinary[]

Here, no package is given to MakeBinary. This means that the current package should be
used.

2.4.5 Installing Compiled Code

Interpreted versions are removed, and compiled ones are used instead by using the In-
stallCode function:

InstallCode["Gauss"];

2.4.6 Prepare for Execution

Define a time measurement function, AbsTime:

SetAttributes[AbsTime,HoldFirst];
AbsTime[x_] := Module[{start,res},

start = AbsoluteTime[];
res=x;
{(AbsoluteTime[]-start) Second,res}

];

2.4.7 External Execution

External Execution of Array Slice Version

Call the version of GaussSolve which contains array slice operations. Repeat the solution

2.4 The Gauss Application Example 65
process several thousand times in order to get a measurable time. The external compiled
GaussSolveArrayslice function is called via MathLink, in the same way an internal
Mathematica function is called. Recall that we defined test matrices a and b earlier. The
same matrices will be used for this test.

loops=8000 * factor;
externaleval=((cc=GaussSolveArrayslice[a,b,loops];)
 //AbsTime)[[1]]/loops
0.000015019427 Second

External Array Slice Version, MathLink in each Iteration

Call the GaussSolve externally-compiled code via MathLink as before, but perform the so-
lution process only once per call. This causes the MathLink communication overhead to
dominate (almost by a factor of 80) over the time needed to perform the actual solution pro-
cess.

loops=100*factor;
externalevalPass=((Do[cc=GaussSolveArrayslice[aa,bb,1],{loops}];)
 //AbsTime)[[1]]/loops
0.000013124328 Second

External Execution of For-Loop Version

The for-loop version of GaussSolve is executed externally several thousand times, which is
sufficient to get an execution time long enough for reliable measurements. The compiled
code is slightly faster than the array slice version, since the generated code avoids some
overhead in creating array objects. On the other hand, the array slice code is almost as fast
and is more concise and convenient to write and understand.

loops=8000* factor;
externalevalFor=((cc=GaussSolveForLoops[aa,bb,loops];)
 //AbsTime)[[1]]/loops
0.000013437156 Second

External For-loop Version, MathLink in each Iteration

As before with the array slice version, if a call via MathLink is performed in each iteration,
the MathLink communication overhead will dominate over the actual computation time.

loops=100;
externalevalPassFor=

66 2.4 The Gauss Application Example
 ((Do[cc=GaussSolveForLoops[aa,bb,1],{loops}];)
 //AbsTime)[[1]]/loops
0.0012497360 Second

Internal Execution of LinearSolve as a Comparison

As a comparison, we call the built-in Mathematica function LinearSolve for a solution of
a linear equation system. LinearSolve uses an efficient solution algorithm from the Lin-
Pack library, which has been linked into the Mathematica kernel.

loops=800*factor;
internalEval=((Do[cc=LinearSolve[a,b]; {loops}];)
 //AbsTime)[[1]]/loops
0.000154021472 Second

Internal execution of Compiled version
loops=200*factor;
s=(c=GaussSolveForLoopsC[a,b,loops];)//Timing;

mevalForC=s[[1]]/loops;
Print["TIMING FOR VERSION (FOR-LOOPS) with Compile[]=",mevalForC];
Dot[a,c] - b // MatrixForm

TIMING FOR VERSION (FOR-LOOPS) with Compile[]=0.000989667 Second

2.4.8 Cleanup

The calls below uninstall the MathLink package and remove temporary files produced dur-
ing the code-generation process.

UninstallCode["Gauss"]
CleanMathCodeFiles[]

CleanMathCodeFiles can also be given an argument to specify which package to clean
up. The default is to clean up the last package compiled, which is used above.

3.1 Examples of Array Operations 67
Chapter 3 Matrix and Vector Operations

In many engineering applications, matrices and matrix manipulation operations are very
common. The availability of an easy-to-use and short-handed notation for manipulating ma-
trices is important for these application domains. Thus, we have extended the Part ([[]])
operation in Mathematica to fulfill this objective.

The basic set of matrix operations in typed Mathematica presented in this chapter is
currently limited to operations on array sections. Declaration of array variables is described
in Chapter 5 and dynamic array allocation and initialization in Chapter 6.

The syntax is inspired by the syntax used by Matlab, Fortran90 and Modelica. This
syntax is supported by the MathCode code generator for up to 4-dimensional arrays and
within Mathematica for an arbitrary number of dimensions.

Only operations on homogenous arrays, i.e. where all elements have the same type, are
supported by the code generator. Also, arrays must have a matrix-like shape, i.e. there must
be the same number of elements in each row or column of a matrix. This constraint applies
to generated code, but not necessarily within Mathematica.

3.1 Examples of Array Operations
Before going into detail about the index notation, the differences between vectors and ma-
trices, and operations on those, we show below a few array-slice operations to give you an
intuitive understanding of the process. First create a small matrix A with symbolic compo-
nents of the form a[i,j]:

A=Table[a[i,j], {i,4},{j,5}]

Result:

{{a[1,1], a[1,2], a[1,3], a[1,4], a[1,5]},
 {a[2,1], a[2,2], a[2,3], a[2,4], a[2,5]},
 {a[3,1], a[3,2], a[3,3], a[3,4], a[3,5]},
 {a[4,1], a[4,2], a[4,3], a[4,4], a[4,5]}}

68 3.2 Index Range Notation
Extract row 2 and 3:

A[[2|3,_]]

{{a[2,1], a[2,2], a[2,3], a[2,4], a[2,5]},
 {a[3,1], a[3,2], a[3,3], a[3,4], a[3,5]}}

Extract all but the first two columns, i.e. from the 3rd to the last column:

A[[_, 3|_]]

{{a[1,3], a[1,4], a[1,5]},
 {a[2,3], a[2,4], a[2,5]},
 {a[3,3], a[3,4], a[3,5]},
 {a[4,3], a[4,4], a[4,5]}}

3.2 Index Range Notation
When manipulating sections of arrays, it is important to have a concise and readable notation
for index ranges. Such a notation is currently missing from standard Mathematica. There is
a standard colon (:) notation used both by Matlab and Fortran90, which unfortunately was
not possible to employ directly in Mathematica due to parsing problems. Instead we chose
the vertical bar (|) which has a graphical layout similar to that of a colon and parses without
problems in Mathematica. For example, an index range from 2 to n is expressed as follows
in Matlab and Fortran90:

2:n

and in our Mathematica notation as:

2|n

3.2.1 Omitting End of Index Range

There are index-range colon expressions in Matlab and Fortran90 without a right-hand side,
which implies that the largest value implied by the context should be used. For example:

2:

3.2 Index Range Notation 69
The 2: in Matlab or Fortran90 means the same as 2:n if there are at most n elements in the
matrix dimension where this range is used, since n is then the largest value implied by con-
text.

In Mathematica the vertical bar is always a binary operator, which means that a
placeholder must be provided for the missing right-hand side. We use underscore (_) as this
placeholder, since that notation is already used for placeholders in Mathematica patterns.
Thus the Matlab and Fortran90 example 2: is represented by the following Mathematica
syntax:

2|_

3.2.2 Omitting Start of Index Range

Alternatively, the left-hand side of the colon can be omitted in Matlab and Fortran90, for
example:

:n-1

This means that the lowest index value should be used, which is always 1 in Matlab and
Fortran90, as well as in Mathematica. The Mathematica counterpart then becomes:

1|n-1

3.2.3 Omitting Both Start and End of a Range

It is possible to omit both the start and the end of an index range, which in Matlab and
Fortran90 becomes a single colon and is equivalent to 1:n for a dimension of size n:

:

In Mathematica this can be represented by:

1|_

This is a very common special case denoting the whole range of a matrix dimension. There-
fore we also provide the compact notation of a single underscore (_) to represent the whole
range of a dimension:

_

70 3.3 Vectors Versus Rows and Columns
3.3 Vectors Versus Rows and Columns
In Matlab all arrays including rows or columns of matrices are 2-dimensional matrices,
whereas in Mathematica and Fortran90 either 1-dimensional vectors or 2-dimensional row
vectors or column vectors are possible.

3.3.1 One-dimensional Vectors

One-dimensional vector variables are type declared using one index dimension, e.g.:

Declare[
 Real[5] x;
]

A one-dimensional vector (i.e. a 1×5 array value with symbolic components might appear
as follows in Mathematica:

{x[1], x[2], x[3], x[4], x[5]}

3.3.2 Row Vectors

A row vector extracted from a matrix is always a two-dimensional (e.g. 1×n) array in Mat-
lab, whereas in Mathematica and Fortran90 it can be either a two-dimensional or a one-di-
mensional entity. Most operations in Mathematica and Fortran90 accept either representa-
tion by performing automatic type conversion to the appropriate vector type, but certain op-
erations such as dot product can be sensitive to the type of vector. An extracted Mathematica
row-vector with symbolic components can appear as follows:

{ {a[2,1], a[2,2], a[2,3], a[2,4], a[2,5]} }

or with numeric components:

{ {1.1, 3.5, 2.3, 5., 6.2} }

The corresponding type is:

Real[1,5]

Thus, a more appropriate term for row vector would be row matrix, since it really is a matrix.

3.3.3 Column Vectors

Analogous to the case for row vectors, a column vector extracted from a matrix is always a

3.4 Extracting or Assigning Vectors From Vectors 71
two-dimensional (e.g. n×1) array in Matlab, whereas in Mathematica and Fortran90 it can
be either two-dimensional or one-dimensional. An extracted Mathematica column-vector
(i.e. an 1×4 array) with symbolic components can appear as follows:

{{a[1,2]},
 {a[2,2]},
 {a[3,2]},
 {a[4,2]}}

or with numeric components:

{{5.5},
 {6.7},
 {8.98},
 {9.35}}

The corresponding type is:

Real[4,1]

In line with the previous case, a more appropriate term for column vector would be column
matrix, since it also is a matrix.

3.4 Extracting or Assigning Vectors From Vectors
A range of elements forming a vector can be extracted or assigned from/to another vector.
For example, first we create a vector X containing symbolic elements:

X = Table[x[i], {i,1,4}]

{x[1], x[2], x[3], x[4]}

Extract the two middle elements:

X[[2|3]]

{x[2], x[3]}

Assign the last three elements:

x[[2|4]] = {22,33,44}

{x[1], 22, 33, 44}

72 3.5 Extracting Vectors From Matrices
3.5 Extracting Vectors From Matrices
Either one-dimensional vectors or two-dimensional row- or column vectors can be extracted
from rows and columns of matrices. However, in almost all cases the one-dimensional ver-
sion is desired when programming in Mathematica or Fortran90. This results in slightly
more efficient code and allows for indexing the vector using one index instead of two.

3.5.1 Extracting One-dimensional Vectors

Extraction operators using a single number or expression, e.g. 2 below, will always produce
1-dimensional vectors. For example:

Extraction of a row as a 1-dimensional vector:

A[[2,_]]

{a[2,1],a[2,2],a[2,3],a[2,4],a[2,5]}

Extraction of a column as a 1-dimensional vector:

A[[_,2]]

{a[1,2],a[2,2],a[3,2],a[4,2]}

3.5.2 Extracting Vectors as Submatrices of Shape 1×n or n×1

The index-range notations {i2} and i1|i2 always produce vectors as two-dimensional
submatrices, whereas just i2 results in one-dimensional vectors as presented in Section
3.5.1. For example:

Extraction of a column as a column-vector, i.e. as an n×1 submatrix:

A[[_,{2}]]

{{a[1,2]},
 {a[2,2]},
 {a[3,2]},
 {a[4,2]}}

The n1|n2 syntax always gives a submatrix. Here it is used to extract a column-vector
which is an n x 1 submatrix as in the previous example:

A[[_,4|4]]

3.6 Assigning Vectors to Rows or Columns of Matrices 73
{{a[1,4]},
 {a[2,4]},
 {a[3,4]},
 {a[4,4]}}

Extraction of a row as a 1xn submatrix:

A[[{2},_]]

{ {a[2,1],a[2,2],a[2,3],a[2,4],a[2,5]} }

The notation {2} is equivalent to 2|2.

3.6 Assigning Vectors to Rows or Columns of Matrices

The examples in this section assume that A is re-initialized as shown in section 3.1 before
execution of each example.

The following sets the contents of a row to the contents of a vector. For example, setting
row 2 to another value:

A[[2,_]] = {11, 22, 33, 44, 55}

{{a[1,1], a[1,2], a[1,3], a[1,4], a[1,5]},
 {11, 22, 33, 44, 55 },
 {a[3,1], a[3,2], a[3,3], a[3,4], a[3,5]},
 {a[4,1], a[4,2], a[4,3], a[4,4], a[4,5]}}

Due to the list representation of arrays in Mathematica, it is possible to get identical results
by only giving a row dimension, e.g.:

A[[2]] = {11, 22, 33, 44, 55}

A column can be assigned the value of a one-dimensional vector:

A[[_,3]] = {11, 22, 33, 44}

Result:

{{a[1,1], a[1,2], 11, a[1,4], a[1,5]},
 {a[2,1], a[2,2], 22, a[2,4], a[2,5]},
 {a[3,1], a[3,2], 33, a[3,4], a[3,5]},
 {a[4,1], a[4,2], 44, a[4,4], a[4,5]}}

74 3.7 Extracting and Assigning Arbitrary Submatrices
Row- and column vectors or two-dimensional shapes 1×n or n×1 can also be assigned to
rows or columns of a matrix. However, be sure to also specify such shapes on the left-hand
side. For example, assigning a 1×n row vector:

A[[_,2|2]] = {{11, 22, 33, 44, 55}}

Assigning an n×1 column vector:

A[[_,3|3]] = {{11},
 {22},
 {33},
 {44}}

3.7 Extracting and Assigning Arbitrary Submatrices
Arbitrary submatrices can be extracted or assigned by using complete range specifications.
For example:

Extracting a 2 × 2 submatrix from A:

A[[2|3, 2|3]]

Result:

{{a[2,2], a[2,3]},
 {a[3,2], a[3,3]}}

Assigning values to a submatrix of A:

A[[2|3, 2|3]] = {{1, 2},
 {3, 4}};

Result:

A // MatrixForm1

{ {a[1,1], a[1,2], a[1,3], a[1,4], a[1,5]},
 {a[2,1], 1, 2, a[2,4], a[2,5]},
 {a[3,1], 3, 4, a[3,4], a[3,5]},
 {a[4,1], a[4,2], a[4,3], a[4,4], a[4,5]} }

1. Actually, a matrix formatted using MatrixForm in a real notebook looks nicer than what
is shown in this text.

3.8 Promotion of Scalars to Vectors or Matrices 75
3.8 Promotion of Scalars to Vectors or Matrices
The standard Mathematica assignment operation will allow the assigning of a scalar value
to a matrix variable even though it has been declared and initialized as a matrix:

A = 5

A has now been converted to a scalar integer variable with the value 5:

A

5

Such assignments will give rise to a type error in generated Fortran90 code. However, it is
possible to perform elementwise initialization of arrays by scalar values both in Mathemat-
ica and in generated code by specifying the dimensions in the left-hand side. Then the scalar
value will automatically be promoted to constant array of compatible shape when perform-
ing the assignment.

For example, the two last columns (from 4 to the end) of A should be set to zero. The
scalar 0 in the example below can be regarded as being promoted to a 4×2 constant array of
zeroes before performing the actual assignment.

A[[_, 4|_]] = 0;

A // MatrixForm

 {{a[1, 1], a[1, 2], a[1, 3], 0, 0 },
 {a[2, 1], 1 , 2 , 0, 0 },
 {a[3, 1], 3 , 4 , 0, 0 },
 {a[4, 1], a[4, 2], a[4, 3], 0, 0 }}

It is possible to set all elements of the array to the same scalar value:

A[[_,_]] = 555;

A // MatrixForm

 {{555, 555, 555, 555, 555 },
 {555, 555, 555, 555, 555 },
 {555, 555, 555, 555, 555 },
 {555, 555, 555, 555, 555 }}

76 3.9 An Example Matrix Function
3.9 An Example Matrix Function
This example function, called matrixtestfunc, is completely meaningless from a com-
putational point of view, but still illustrates how matrices can be declared as formal param-
eters and local arrays, returned as function values, and operated on by a number of assign-
ment and value-extraction array section operations. The local variables a, b, c and d are sim-
ply initialized to integer constants. The syntax used for declaring arrays is explained in more
detail in Chapter 5.

matrixtestfunc[Real[n_,n_] ain_]->Real[n,n] := Module[{
 Real[n,n] y;
 Integer {a=2,b=3,c=2,d=4};
 },
 y[[_,2]]=ain[[_,2]];
 y[[_,a|_]]=ain[[_,a|_]];
 y[[_,c|d]]=ain[[_,c|d]];
 y[[a,_]]=ain[[a,_]];
 y[[a|_,_]]=ain[[a|_,_]];
 y[[a|b,_]]=ain[[a|b,_]];
 y[[a|_,c|_]]=ain[[a|_,c|_]];
 y[[a|_,c|d]]=ain[[a|_,c|d]];
 y[[a|b,c|_]]=ain[[a|b,c|_]];
 y[[a|b,c|d]]=ain[[a|b,c|d]];
 y[[_,b]]=ain[[_,b]];
 y[[a,_]]=ain[[a,_]];
 y
];

3.10 Current Limitations
The current MathCode code generator is limited to array section operations on up to 4-di-
mensional homogenous arrays. Also, it is currently not possible to specify a different stride
(i.e. step size) than the default 1, as can be done in both Matlab and Fortran90.

4.1 Why Type Declarations? 77
Chapter 4 Rationale for Type
Declarations in Mathematica

Previously, in Chapter 1, we presented some examples of static type declarations in Mathe-
matica code needed to use the MathCode code generator. In this chapter, the type declara-
tion notation, or “type system”, is motivated and presented in broader perspective—a type
system can be used for more purposes than just to provide the necessary typing needed for
a code generator.

The main reason to introduce static typing in Mathematica is to be able to generate
efficient code in languages such as C++ and Fortran90.

The static type system presented here is designed to be well integrated into
Mathematica. The syntax is Mathematica compatible, which makes it possible to use the
type extensions in ordinary Mathematica code.

The type declarations are treated as code annotations within Mathematica, i.e. loosely
associated additional information. Thus, they have no effect on execution and symbolic
transformations within Mathematica apart from introducing the names of declared types and
variables in the current Mathematica context. The only exceptions are typed array variable
declarations with or without initialization parts, where the declared variable is allocated
automatically to the specified dimensions and size.

Certain advanced features of the type system such as class declarations, records, etc.,
which sometimes are briefly hinted at in the text, are not implemented in the current version
of MathCode, but are planned to become available in a future version.

4.1 Why Type Declarations?
There are several reasons why a static type system is a useful extension to Mathematica:

• Precise static type information is needed for generation of efficient executable code.
• A type checker is useful for finding errors during software development in Mathematica.
• Object-oriented typing is useful to handle complexity when building large applications

78 4.2 Types for Code Generation
and equation-based simulation models.

Additional requirements of a type system are:

• Ease of use. The type system should be easy to understand and use.
• Readability and standardization. The type notation should be readable and conform to

common program language standards, as well as to relevant Mathematica conventions.
• Compatibility. Typed Mathematica code should be able to be executed together with

untyped code. Adding type information should be a pure extension—existing code
should, for the most part, not need to be changed.

We discuss below the motivation behind a static type system in more detail.

4.2 Types for Code Generation
Precise static type information is needed for translating Mathematica into efficient code in
strongly typed languages such as C++, Fortran90 and Java. It is also needed for more effi-
cient internal compilation of Mathematica to efficient code as evidenced by the type infor-
mation parameters to the standard Mathematica Compile function.

Experience from research on code generation to C++ and Fortran90 from the
ObjectMath1 extension to Mathematica made it clear that precise static type information
could not always be automatically deduced from dynamically typed Mathematica code,
especially when list structures (arrays) were involved. Therefore explicit declaration of
static type information was introduced. However, in many cases it is possible to
automatically derive static type information through type inference.

Precise static typing is especially important to provide consistent handling of arrays
between Mathematica, C++, Fortran90, Java, etc., including compatibility with array
representations used in common numerical subroutine libraries.

4.3 The Need for Type Checking
Debugging Mathematica programs can be hard. Simple spelling errors and other mistakes
may cause pattern matching to fail, which causes huge unevaluated expressions to be re-
turned to the user. It is usually not so easy to realize where the source of the error is located.
Partial dynamic type checking of function parameters can be turned on, but will only be able
to catch errors for the particular test cases which are used during debugging and testing.

A static type checker can be of great help in finding simple mistakes such as spelling

1. Article in IEEE Software, July 1995.

4.4 Types for Object Oriented Simulation Modeling 79
errors of variables or function names, wrong number of arguments to functions, mismatch
of actual argument types and formal parameter types, etc. Concerning parameter types, most
built-in Mathematica functions have numeric parameters which will be assigned the type
Real in the static type system. The static type Real is, of course, an approximation, since
there are several numeric forms in Mathematica such as infinite precision numbers and
fractions. However, the approximation to Real fits well with code generation to statically
typed languages such as C++ or Fortran90 as well as being a reasonable static type
approximation for execution within Mathematica, since the exact numeric type may change
dynamically during execution.

A relevant question is whether the static type system would be able to detect enough
errors, since most functions in Mathematica are numeric anyway, and declaring the type
Real for function parameters and results will not add considerable information. There are
however many functions which accept parameters that are vectors and arrays of different
forms and for which precise type information is quite useful for type checking. Other
functions accept parameters which are records represented as tagged tuples. Additionally,
checking the number of function parameters and whether a function or variable has been
declared would catch many common mistakes by Mathematica programmers.

4.4 Types for Object Oriented Simulation Modeling
Simulation models are usually constructed to simulate a model of aspects of the external
world. This is precisely where object orientation is most useful. For example, typical me-
chanical systems consist of a number of mechanical components which can be described by
classes containing equations that describe motion, forces, material properties, etc. Simula-
tion models of mechanical and other systems can be put together by connecting such objects
from class libraries.

For example, a car contains connected objects such as a motor, transmission, wheels, etc.
Inheritance provides reuse of equations and function definitions when inheriting from
general classes to more application-specific instances. Thus, object-oriented type and class
mechanisms provide structuring and reuse when building mathematical simulation models
of physical systems. A future extension of the MathCode system will provide object-
oriented typing for simulation applications.

4.5 Introducing Declarations in Mathematica
When introducing declarations and static typing as an extension of Mathematica, some key-
words and names need to be reserved. The chosen keywords should be intuitive and easy to
understand, correspond to common practice in other programming languages, and prefera-
bly not be used for other purposes within Mathematica.

80 4.6 Declarations in Mathematica Packages
The same requirements hold for the syntax of typed definitions. This syntax should be
readable, easy to use, compatible with Mathematica syntax, and correspond to common
programming language conventions.

4.6 Declarations in Mathematica Packages
The notion of declaration is already present in standard Mathematica, although it is not very
pronounced. A Mathematica package can be regarded as a sequence of untyped variable and
function declarations. For example:

BeginPackage["ExamplePackage`"]

 varname1;
 varname2=35;

 func1[a_,b_] := ...;
 func2[x_,y_] := ...;

EndPackage[]

The untyped “declarations” of variables varname1 and varname2 introduce these names
into the name context of the package. The “declaration” of varname2 also initializes the
variable. The “declarations” of functions func1 and func2 define these functions.

4.7 Basic Types
The basic type names Real, Integer, Complex, Symbol, String etc. are already defined
by Mathematica to be used in patterns and as head tags of basic objects. However, since the
meanings of these words are essentially the same when used in a static type system, there
should not be a problem with continuing to use these type names. To choose other names
would be confusing to the user.

We introduce the type name Boolean as the type for values True or False, and Null
to indicate the empty type or absence of type, e.g. for a procedure that does not return any
data value.

The type name AnyType indicates that an object may have any type, which is useful to
describe the type of certain objects, e.g. the element type of an array that may contain a
mixture of objects such as real numbers, integers, strings etc. See section 5.1 that explains
which basic types are actually implemented in MathCode F90

4.8 Dual Type System 81
4.8 Dual Type System
Are Mathematica patterns the same as types? One might be tempted to answer yes to this
question since both notions describe sets of objects which fulfill a pattern or type constraint.
There are however certain differences between patterns and types, as evident in languages
such as C++ or Fortran90:

• A pattern language is designed to express structural properties to be dynamically tested
during execution, whereas a static type system describes properties to be checked
statically before execution starts. This tends to influence the pattern or type notation.

• Certain aspects of the static type system, e.g. user-defined type names, record types,
arrays, classes, etc. do not fit well into the Mathematica pattern language.

• Static type information can be approximate when used for type checking. For example,
our Real type is an annotation that tells the system that a certain object (e.g. a function
call) has a potential numeric non-integer (Real or Rational) value if all arguments to
such an object are numeric and not symbolic.

• Precise static type information is needed for generation of efficient code in statically
compiled languages. Sometimes this information must be provided by the user to obtain
the precise intended meaning for generated code.

Mathematica patterns is in fact a mechanism to describe dynamic types — i.e. types that can
change during execution. For example a variable x may be a symbol, then change into an
expression and finally change into a real floating-point number during evaluation.

On the other hand, in a static type system, one would like to express that a variable
always has the static type Real even though it is sometimes represented by a symbol,
sometimes by an expression and sometimes by a floating-point value. This is especially
needed for compiling to statically typed languages and for static type checking. Another use
for static types is in user-defined types; for example a variable could have a static type
Voltage even though it has a real value and would have matched the head Real in
Mathematica.

Hence, we need static typing. Combined with the Mathematica patterns, MathCode thus
provides a dual type system, fulfilling both requirements.

4.9 Typed Function Declarations
Consider the following four variants of the same untyped function f2 in Mathematica, for
which the second and third rules are attempts to include some dynamic type information; the
variable x could be a symbol, an expression, a floating-point number etc.:

82 4.9 Typed Function Declarations
f2[x_] := x+2;

f2[x:_Integer] := x+2;

f2[x:(_ | _Integer)] := x+2;

f2 = Function[{x}, x+2];

The first definition of f2 works for both symbolic and numeric arguments, which is often
what the user intends, e.g. when producing symbolic expressions that will eventually be
computed numerically. If an _Integer pattern is provided as a parameter “type” in the sec-
ond definition, the function will unfortunately no longer work for symbolic arguments such
as names of variables with potential integer values. The third definition can both handle
symbolic arguments and provide some type information, but may collide with some uses of
Alternative (|) and still does not specify a function-return type. The fourth version does
not include any type information at all, analogous to the first version.

Therefore, for reasons mentioned in the previous section, we provide static argument
types and the function type in a function signature integrated into the function head. Type
prefixes are separated from formal parameter names by one or more spaces, which are
represented by a special kind of prefix operator in the Mathematica FullForm
representation1. An arrow in the signature indicates mapping from input argument types to
output result types. Some examples are shown below.

sin2[Real x_] -> Real := Sin[x]+2.0;

myprint[Real x_] -> Null := Print[x];

myrandom[] -> Real := Random[];

myfunc[Integer x_, Real y_] -> Real := x+y*y;

sincos3[Real x_, Real y_] -> Integer :=
 Floor[Sin[x]+Cos[y]+myfunc[x,y]];

Notice that the:= must be on the same line as the function head. Otherwise the Mathematica
parser will read the first line separately and the type information will not become associated
with the declared function. The following is not allowed:

sincos3[Real x_, Real y_]->Integer

1. The exact form of this FullForm prefix operator will change in future MathCode releas-
es. Users should not make themselves dependent on the current FullForm representation
of the prefix operator.

4.10 Typed Declarations 83
:= Floor[Sin[x]+Cos[y]+myfunc[x,y]];

Below is the FullForm of the first definition (sin2). As shown, the arrow from the func-
tion prototype to the result type becomes a Rule[] node.

SetDelayed[
 Rule[sin2[Real[Pattern[x,Blank[]]]],Real],Plus[Sin[x],2.]
]

Since Rule[] nodes are essentially never used as function names in normal Mathematica
code (they are expressions, not names), the:= operator (SetDelayed) can for Rule[]
nodes be redefined to perform the special action of storing type information in a symbol ta-
ble, as well as defining an untyped sin2 function as usual. This stored type information is
then used for type checking and code generation. The untyped sin2 function can be execut-
ed interpretively within Mathematica, which gives full compatibility with interpreted Math-
ematica code.

4.9.1 Type Arguments to the Mathematica Compile Function

The example below illustrates the rather drastic changes that would need to be made to a
typical user-defined function such as sincos3, in order to use the standard Mathematica
Compile function. This violates our requirements of compatibility and co-existence with
interpreted Mathematica code and makes the function definition much less readable. There-
fore this notation is not a viable option for typed Mathematica function definitions.

sincos3 = Compile[{{x, _Real}, {y, _Real}},
 Floor[Sin[x]+Cos[y]+myfunc[x,y]],
 {{myfunc[__], _Integer}}]

4.10 Typed Declarations
There are several kinds of declarations where static type information can be supplied. For
example, the type signatures of functions and the types of global variables need to be de-
clared. We introduce the Declare[] declarator for declaring global variables, as shown in
the example package below. Declared variables may be initialized, as in the variable
varname2 below:

BeginPackage["TypedExamplePackage`"]

Declare[
 Real varname1;
 Integer varname2 = 35;

84 4.10 Typed Declarations
];

myfunc[Real x_, Real y_]->Real := x+y*y;

sincos[Real x_, Real y_]->Real := Sin[x]+Cos[y]+myfunc[x,y];

EndPackage[]

Declare can also be used to declare function signatures, i.e. provide separate static type
information for previously untyped Mathematica functions:

BeginPackage["TypedExamplePackage`"]

Declare[
 Real varname1;
 Integer varname2 = 35;
 myfunc[Real x_, Real y_]->Real;
 sincos[Real x_,Real y_]->Real
];

myfunc[x_,y_] := x+y*y;

sincos[x_,y_] := Sin[x]+Cos[y]+myfunc[x,y];

EndPackage[]

5.1 Basic Types 85
Chapter 5 More on Typing and Declarations

As previously mentioned, the typed extension to Mathematica provides language extensions
for declaring static types of Mathematica variables, arrays and functions. It also augments
the pattern facilities for functions already present in Mathematica. This static typing scheme
is general enough to provide a consistent, strong typing of the compilable Mathematica sub-
set, described in more detail in Appendix A. This is the basic subset of Mathematica handled
by the code generator. This subset is extensible via definitions provided by the system
package (see Section 7.8 on page 125).

5.1 Basic Types
As mentioned in the previous chapter, the basic type names Real, Integer, Complex,
Symbol, String, etc. are already defined by Mathematica to be used in patterns and as
head tags of basic objects. We continue to use some of these type names in the static type
system.

• Real—In generated code the Real type is represented by the IEEE double precision
floating point type (REAL(8)). When executing within Mathematica the Real type has
a wider range, including infinite precision rational numbers.

• Integer—In generated code the Integer type is represented by a standard integer type,
INTEGER(4). When executing within Mathematica, integers with unlimited numbers of
digits are supported. This may lead to differences in numerical results.

• Null—This represents the absence of a typed value, e.g. for functions which do not
return any value. In standard Mathematica Null is used in several circumstances to
indicate the absence of an item, e.g. a non-existent value, a missing expression or
statement, etc. There is no such type in Fortran. Mathematica functions that return a
value are translated to Fortran functions. Mathematica functions that do not return any
value are translated to Fortran subroutines.

•

86 5.2 Declarations
All other types are not part of the compilable subset

5.2 Declarations
There are several kinds of declarations where type information can be supplied, including
declarations of constants, variables, and user-defined types.

5.2.1 Variable Declarations

The types of variables need to be declared for reasons previously mentioned, although type
inferencing techniques can be introduced to deduce the types of some, but not all, variables.

Earlier we introduced the Declare[] declarator for declaring global variables, as
shown in the example Mathematica package below. Declared variables may be initialized,
as for the variable i2 below.

Declare[
 Real r1,
 Integer i2 = 35
];

The Declare[] declarator is not needed for declarations of local variables in Module[],
Block[] or With[] bodies of typed functions, as in the contrived example below. This ex-
ample also shows the syntax of simultaneous declaration of several variables (here: y,z,w)
with the same type. Note that the variable y is returned as the value of the function f by be-
ing the last expression (which thus must be without the ending semicolon) at the end of the
function body.

f[Real x_]->Real := Module[{
 Integer n,
 Real {y,z,w},
 Integer i = 1,
 Integer j = 0
},
 y = x+i+j;
 y
];

The following example shows how both function signatures and global variables can be de-
clared separately using Declare:

5.2 Declarations 87
Declare[
 mytan[Real x_]->Real,
 Real[3,3] myarr
]

mytan[x_]:=Sin[x]/Cos[x];

You might ask how typed local variable declarations can work, since such declarations are
not allowed by Mathematica for Module[] or Block[] sections within ordinary untyped
functions. The reason that these declarations work is that the MathCode type analyzer during
the analysis of typed function declarations removes and stores elsewhere all type informa-
tion from local variable declarations and simultaneously produces an ordinary untyped ver-
sion of the function that can execute as usual within Mathematica. This is done just once
during declaration elaboration, before the function is called, so that the Mathematica code
is not slowed down by any additional type checking at run-time.

5.2.2 Constant Declarations

Named compile-time constants are available in several languages such as C, C++, Fortran,
etc. When translating from Mathematica to those languages, it is useful to be able to gener-
ate declarations of such symbolic constants since this guarantees that generated code and
hand-written code referring to such a constant references exactly the same constant value.
Symbolic constants are also quite useful when specifying the dimension sizes in declarations
of fixed sized arrays. Currently the constants used in symbolically evaluated functions are
replaced by their values. All declared constants are represented as global variables in the
generated code and are initialized by corresponding constant expressions.

The constant declaration sets the Constant attribute for the constant name in
Mathematica, which is relevant for symbolic derivatives, as well as setting the attribute
Protected which prevents accidental assignment of a new value to the constant. Some
examples are shown below.

Declare[
 Constant one = 1,
 Constant age = 5.5,
 Constant Integer vsize = 100,
 Constant Real Pi,
 Constant Real[10] constvec = {1,2,3,4,5,6,7,8,9,10}
];

As can be seen from the examples, a constant may or may not be initialized, and can have
an associated optional type. If no type is specified, the type is inferred from the type of the
initialization expression, if possible. If no value is supplied, the constant is either used only

88 5.3 Type Constructors and Data Constructors
for symbolic computations where the value is not needed, or the value has already been pre-
defined as in the case of Pi.

5.3 Type Constructors and Data Constructors
A type constructor is a function that can create types and may have types or other entities as
arguments. Essentially any type name can be used as a type constructor.

For example, Real is a 0-ary (i.e. nullary—no arguments) type constructor that creates
the Real type. By contrast, a data constructor is a function or tag that creates and marks a
data value.

5.3.1 List Structures and Array Types

Arrays in the compilable Mathematica subset are homogenous, ordered collections of ele-
ments, all belonging to a common base type (e.g Real, Integer). In standard Mathemati-
ca, arrays are known as list structures. However, these are internally implemented as dynam-
ically extensible arrays.

Arrays can be declared as one-dimensional, two-dimensional or multi-dimensional. If
the Mathematica program is going to be translated to Fortran90, there is a limitation of 7
dimensions. For translation to C++ there is currently a limitation of 4 dimensions.

Arrays can be passed as arguments to Mathematica functions and returned as function
values.

5.3.2 Array Type Constructors

Compared to the previous example where Real was a nullary type constructor, in Re-
al[10] the name Real is a unary (one argument) type constructor that creates the type: ar-
ray of ten real numbers. In Integer[5,5], the name Integer is a binary (two argument)
type constructor that creates the type: square 5 by 5 matrices of integers. Thus, the element
type with one or more arguments is used as a type constructor for arrays of one or more di-
mensions. Some examples:

Real[3] (* A type for one-dimensional arrays of 3 real numbers *)
Real[5,4,10] (* A three-dimensional real array type *)
Integer[4,4] (* A type for 4x4 arrays of integers *)
Integer[_,_] (* A type for 2-dim arrays of integers with
 unspecified number of rows/columns *)

The symbols m and n in the array type below can be named integer constants or global vari-
ables assigned only once, in which case they are sometimes referred to as execution param-

5.4 Array Variable Declarations 89
eters (see page 97), or local variables which have been initialized to the dimension sizes of
the array:

Integer[m,n]

5.3.3 Data Constructors

In contrast to type constructors, data constructors are functions or tags which build or mark
data values. For example, the tag Complex in Mathematica is a data constructor that builds
and tags complex numbers.

The basic type names Real, Integer, Symbol, String might also be regarded as
types of basic data constructors, since Head[3.2353] returns Real, and Head[55]
returns Integer, Head["a string"] returns String and Head[MyX] returns Symbol.

Complex is a data constructor as well. Complex[2.0, 3.0] creates a complex
number. An expression 2.0 + i 3.0 when evaluate returns this complex number.

5.4 Array Variable Declarations
Below is an example of declaring global array variables, enclosed within the Declare[]
declarator needed to specify global variables:

Declare[
 Real[10] x,
 Integer[n,m] y
]

Local array variables in functions are declared within the list of local variables in a
Module[], Block[] or With[]:

Module[{
 Real[10] x,
 Integer[n,m] y
 },
 ...
]

5.4.1 Declaring Multiple Array Variables

The syntax for declaring multiple array variables of the same type is the same as that for de-
claring several scalar variables of the same type, as in the declaration of the scalar variables
x, y, z and the array variables xvec, yvec, zvec below:

90 5.5 Functions
Real {x, y, z }
Real[2] {xvec, yvec, zvec }

Initialization parts are possible in both cases:

Real {x=value1, y=value2, z=35.4 }
Real[2] {xvec={1.,1.}, yvec={3.,4.}, zvec={10.,5.5} }

5.5 Functions
Functions can be declared with zero or more argument types and a return type which might
be Null to indicate the absence of a return value. The first example shows a function Dou-
bleSix which accepts one integer parameter and returns a real result:

DoubleSix[Integer x_]->Real := 6.0+x+x;

Static type signatures of functions can also be specified in a separate Declare statement as
shown below:

Declare[Doublesix[Integer x_]->Real];

DoubleSix[x_] := 6.0+x+x;

Both static and dynamic types1 (e.g. see Section 4.8 on page 81) can be specified as below:

Declare[Doublesix[Integer x_]->Real];

DoubleSix[x_Integer] := 6.0+x+x;

5.5.1 Functions with No Input Parameters

Functions without input parameters are specified with an empty [] representing the empty
list of input parameter types, e.g.:

Six[]->Real := 6.0

1. The “dynamic type” is an ordinary Mathematica pattern like _Integer or _Real that is
used for ordinary dynamic pattern matching.

5.5 Functions 91
5.5.2 Functions with Multiple Return Values

An example of a function with multiple return values is shown below. This function accepts
one real parameter value and returns two real values. When translating to C++ or Fortran90,
multiple return values are handled by adding additional output parameters in the code of the
translated functions.

SinCos[Real x_]->{Real, Real} := { Sin[x], Cos[x] };

Functions with multiple return values should be called on the right-hand side of an assign-
ment statement with several variables on the left-hand side, e.g.:

{y,z} = SinCos[5.5];

Note that from a typing point of view this is different than a function returning an array of
two elements, which can be declared as follows:

SinCos2Vec[Real x_]->Real[2] := { Sin[x], Cos[x] };

and called as below:

y2vec = SinCos2Vec[5.5];

5.5.3 Functions Returning Arrays

Arrays can be passed as parameters to functions, as in the function AddThree below:

AddThree[Real[3] vec_]->Real := vec[[1]]+vec[[2]]+vec[[3]];

and arrays can be returned as function values:

OneTwoThree[]->Real[3] := { 1., 2., 3. };

5.5.4 Functions with No Return Value

Some functions (usually called procedures) do not return any values. They simply perform
computations and side effects, such as assigning values to global variables or performing in-
put/output.

The function AssignIntvar below is an imperative function (really a procedure) that
does not return anything (just Null) but has a side effect of changing the declared global
integer variable Intvar:

AssignIntvar[Integer x_]->Null := (Intvar = x+5;);

92 5.5 Functions
An example of a function lacking both input parameters and result value:

AssignIntvar[]->Null := (Intvar = 5;);

In standard Mathematica Null is used in several circumstances to indicate the absence
of an item, e.g. a non-existent value, a missing expression or statement, etc.

5.5.5 Functions with Local Variables

The type information for local variables uses the same syntax as that of globally declared
variables but with the keyword Declare[] omitted. For example the function body creates

foo[Real x_]->Real := Module[
{
 Integer n,
 Real w2,
 Integer i = 1
},
 ...

]

the local variables n, w2, and i with the types Integer, Real, and Integer respectively.
The Declare[] command can be used to separately specify the types for the local

variables in combination with function signatures as follows:

Declare[function signature, {local variable types}]

The list of local variable types must be given immediately after the corresponding function
signature. Several function signatures can be given in a Declare[] statement combined
with local variable type specifications. If the function body consists of several nested blocks
the types for the local variables are assumed to match the topmost block.

The previous example appears as follows when local variable type specifications are
separated from the function itself as in the Declare[] statement below:

Declare[foo[Real x_]->Real, {Integer, Real, Integer}]

foo[x_] := Module[
{ n, w2, i = 1},
 ...
]

5.5 Functions 93
5.5.6 Structure of a Small Example Package with Typed Functions

The following small package example shows the recommended structure of a typical pack-
age using constructs in typed Mathematica. More complete package examples have already
been presented in Chapter 2.

There are two sections containing names here. The first contains publicly visible names
that can be referenced outside the package. The second contains global names that should
only be visible within the package. There are several reasons to have these as separate
sections. For example, if the package is stored in a notebook, you can have each of these
sections in a separate cell. It is then easy to add a new public or private global name just by
adding it to the appropriate list and re-evaluating the corresponding cell. It is also beneficial
to have a private global name list for documentation purposes and to make it easier to move
names between the public and private global name lists as needed.

Needs["MathCode‘"]

BeginPackage["TypedExamplePackage‘"]

(* Interface section with exported, publicly visible names *)
Begin["TypedExamplePackage‘"]
 r1;
 extfunc;
End[]

(* Private global names, only visible within the package *)
Begin["TypedExamplePackage‘Private‘"]
 i2;
 b3;
 sincos;
End[]

(* Implementation section *)
Begin["TypedExamplePackage‘Private‘"]

(* Global variables *)
Declare[
 Real r1,
 Integer i2 = 35,
 Boolean b3 = False
];

(* Typed function definitions *)

extfunc[Real x_, Real y_]->Real := x+y*y;

94 5.5 Functions
sincos[Real x_, Real y_]->Real := Sin[x]+Cos[y]+extfunc[x,y];

(* End of implementation section *)
End[]

(* End of Package *)
EndPackage[];

5.5 Functions 95
Chapter 6 Data Allocation and Initialization

The standard Mathematica semantics of variable declarations separates the declaration of
the variable, i.e. the introduction of the name of the variable, from the allocation/initializa-
tion of a value for that variable. This makes sense, since many computations in Mathematica
are symbolic and thus involve symbolic names rather than (numerical) values.

Thus the separation of type declaration and memory allocation for a variable means that
allocation is specified by a separate explicit allocation/initialization part. This is different
from languages with implicit allocation. Complete separation goes even further—
declaration of the type for a variable is completely separated from allocation and
initialization which can occur later, even in a separate part of the program.

Below we compare Mathematica with possible target languages for generated code.

• Mathematica. Declaration of type is separate from allocation/initialization. Allocation
and initialization are explicitly specified in an initialization part. Allocation and
initialization are coupled, i.e. always occur together. The initialization part of
declarations is optional. Complete separation of type declaration and allocation is
possible by leaving out the initialization part.

• Fortran90. Declaration of variables with simple types (Real, Integer,...) implicitly
allocates memory. Regarding the declaration of variables with structured types (arrays,
records), both explicit and implicit models are possible. Declarations can either cause
implicit allocation or require separate explicit allocation depending on how constructor
functions are defined and used. The MathCode library used by the MathCode code
generator supports implicit allocation in conjunction with variable declaration.
Initialization is optional. Complete separation of type declaration and allocation is
possible in Fortran90 via pointer variables.

Implicit allocation of declared variables is a safer programming practice and usually gives
better performance of the compiled code than complete separation of declaration and allo-
cation. Therefore, Mathematica variable declarations with or without the initialization part
are compiled to variable declarations with implicit allocation whenever possible.

96 6.1 When Should Allocation and Initialization be Performed?
6.1 When Should Allocation and Initialization be Performed?
The rules for variable allocation and initialization are specific for each programming lan-
guage. Here we are primarily interested in the comparison between transparent allocation/
initialization behavior in typed Mathematica and generated code behavior in Fortran90, i.e.
initialization code should execute in essentially the same way.

For typical computing applications there is often a set of global variables which, in a
sense, are execution parameters for the whole application and thus should obtain their
values quite early. We need a way to structure the computation so that these execution
parameters obtain their values before the actual computation occurs and before the
allocation of non-constant sized data structures.

6.1.1 Initialization of Global Variables

There are three cases of declarations of global variables to consider:

• Global variables with statically known size. Examples are scalar variables or array
variables with constant dimension sizes, e.g. in a declaration such as:

Declare[Real[3,3] xmat = initializer]
Such variables can be allocated and initialized statically before execution. This is
usually done automatically in Fortran90. For typed Mathematica, allocation is
performed when the declaration statement is first encountered and evaluated.

However, if the initializer contains a non-constant expression that refers to some
variables whose values are not yet defined, the initialization should be done later when
these variables have received their values, e.g. as in the Electrons example in the next
paragraph. This should be done via a user-specified call to the function
packagenameInit[]. This function is generated automatically when
CompilePackage is called. For example, for a package mypack this function would
be called mypackInit[].

• Global array variables for which the allocated sizes are not fixed until runtime and for
which dependency on the values of one or more integer variables is possible. Such
integer variables are sometimes called execution parameters since they may
parameterize array allocation for the whole computation.

An example of this is the simulation of an atom, for which the value n of the number
of electrons needs to be read in before descriptive array variables like Electrons in the
following declaration are allocated:

Declare[Real[n] Electrons = initializer]
The desired behavior is to allocate such array variables after the relevant execution
parameters have received their values but before the array variables are first used.

6.2 Array Allocation and Initialization 97
Therefore the system generates a function called packagenameInit[] in each
compiled package. This function allocates and initializes global variables declared in
that package. For Mathematica code intended to be translated to stand-alone code, a call
to this allocation/initialization function should be inserted explicitly by the user at the
appropriate point in the code, usually quite early in the computation. This function is
automatically called to perform initialization at the start of a C++ computation when the
application is installed by InstallCode[] from the Mathematica environment.

• Global variables with unknown sizes and explicit initialization code. Allocation occurs
when the relevant explicit allocation/initialization user-written code is executed. Such
allocations and initializations which are part of the declaration initializer are performed
when the package specific packagenameInit[] function is called.

Local Variables

Declared local variables are allocated and possibly initialized when the function body is en-
tered and these declarations are elaborated. This is done both for Mathematica and for target
languages like C++ and Fortran90. Thus, such variables pose no special problems.

6.1.2 Execution Parameters

For typical applications such as simulations and numerical experiments there are certain glo-
bal or class variables that might be called execution parameters since they, in a sense, are
parameters for each execution of the whole application.

These variables should be assigned values only once, quite early during execution,
before the allocation of all “static” variable-sized data structures and before execution of
non-constant initializers. An example is the parameter n, which determines the size of
allocated arrays for the atom simulation mentioned in Section 6.1.1.

6.2 Array Allocation and Initialization
A declared array usually needs to be allocated and initialized in order to be used for further
numeric or symbolic computations. Mathematica always initializes arrays when they are al-
located, whereas languages like C++ and Fortran90 allow the (sometimes error prone) prac-
tice of allocating without initialization.

There are two situations in which an array variable does not need to be allocated; the
first is when it is a formal parameter to a function and thus already has been allocated. The
second case is when declaring an un-allocated array variable which eventually obtains its
allocated value by assigning the results from some function that returns array values.

98 6.2 Array Allocation and Initialization
6.2.1 Array Usage and Representation in Mathematica

In Mathematica several options are available for creating and storing arrays, e.g., homoge-
nous list structures. It is necessary to have several variants of array storage and representa-
tion due to different needs in different situations. For example, there might be a need to work
either symbolically or numerically, to evaluate as soon as possible, or to defer evaluation.
Additional aspects concern storage allocation and initialization at array allocation time. The
four most important aspects are:

• Symbolic or numeric array elements
• Immediate or deferred evaluation
• Storage allocation and representation
• Initialization

By comparison, languages like Fortran90 and C++ always perform numeric computation,
have immediate evaluation, usually allocate storage immediately, and may or may not ini-
tialize data at array creation.

6.2.2 Array Initialization by Promoted Scalar Values

It is often the case that a numeric array needs to be allocated and each element initialized to
zero. This can be expressed rather clumsily by explicit initialization to a constant array value
as in the declaration below:

Real[3,3] mat = {{0.,0.,0.}, {0.,0.,0.}, {0.,0.,0.}}

A more elegant way to express this is to introduce promotion of scalar values like 0.0 to ar-
ray values of appropriate size and dimension. This is possible since the element type, size
and dimension information is available within the declaration. Such promotion is already
standard in Mathematica for arithmetic expressions consisting of mixed scalars and arrays,
since arithmetic operations have the Listable attribute. Thus, the following concise and
readable notation is supported in typed Mathematica:

Real[3,3] mat = 0.0

What actually happens is that the system replaces 0.0 by the call Table[0.0,{3},{3}]
which allocates the desired zero-initialized array. The above example will give the array
variable mat the following initial value:

{{0.,0.,0.}, {0.,0.,0.}, {0.,0.,0.}}

6.2 Array Allocation and Initialization 99
A declaration and initialization of such a global variable can be expressed as follows:

Declare[
 Real[3,3] mat = 0.0
];

Remember that the Declare[] declarator is only used for the declaration of global vari-
ables—not for local variables.

Initialization of Runtime Sized Arrays

It is common that the sizes of array dimensions are not known until runtime. Essentially all
code in general numerical libraries is written in that way. The variable names n and m are
used instead of constants for array dimension sizes in the example below:

Real[n,m] mat = 0.0

In this case, the symbolic names n and m will still be part of the type specification of mat,
and the values of n and m will be used when creating an array of appropriate size.

Dimension size variables like n and m can be any local variable, function parameter or
global variable, all of which must be of type integer. Good programming practice is to regard
these variables as single assignment, i.e. they should be assigned the dimension sizes just
once and not changed afterwards to avoid making the values of dimension size variables
inconsistent with the actual dimension sizes of the array. If n and m have not been assigned
integer values, a run-time error will occur in Mathematica.

Also regard the declaration of a square matrix below:

Real[n,n] squaremat = 0.0

This declaration expresses two type constraints. The first is that both dimension sizes are
equal, i.e. a square matrix. The second constraint is that the sizes of both dimensions are
equal to the value of the integer variable n at the point in time when the array is allocated
and initialized—and hopefully also afterwards.

Allocation Without Initialization

Type declaration of an array together with allocation without requiring initialization can be
specified for an array variable by simply leaving out the initialization part. When executing
in typed Mathematica the array variable is in effect initialized to an array of unspecified con-
tent—often an array filled with an unspecified internal value (e.g. -999), in order to catch
possible access-before-definition errors.

Generated code in C++ and Fortran90 becomes slightly faster when using this

100 6.2 Array Allocation and Initialization
alternative since initialization to zero is not required. The first example below shows
allocation of a fixed-sized array without explicit initialization:

Real[3,3] mat

The second version declares and allocates an array for which the sizes of the dimensions are
determined by two variables n and m, whose values are not known until runtime:

Real[n,m] mat

General Initializers

Explicit initialization of array elements to an arbitrary value or expression, e.g. the value 150
below, is also possible, using one of Mathematica’s array data constructors Array or Ta-
ble, or any other Mathematica function that returns an array with the appropriate dimen-
sions and sizes. For example:

Real[3,3] mat = Array[150.&,{3,3}]

or

Real[3,3] mat = Table[150.,{3},{3}]

which both initializes mat to the same array value:

{{150.,150.,150.}, {150.,150.,150.}, {150.,150.,150.}}

The Array form is more general than Table, but slower when running interpretively in
Mathematica (by more than a factor of ten) for large arrays, since Array computes a sup-
plied function (in the above example the constant anonymous function 150.&) for each el-
ement, whereas Table just computes an expression for each array element.

Two examples of allocation and initialization of matrices with special structure are the
calls to IdentityMatrix and DiagonalMatrix below, where n is a global or local
integer variable.

Real[n,n] mati = IdentityMatrix[n]

Real[n,n] matd = DiagonalMatrix[Range[n]]

6.2 Array Allocation and Initialization 101
Unspecified Dimension Sizes

It is also possible to declare the type of arrays for which dimension sizes are not known even
when the declaration is elaborated. In such cases, the size indicator of each dimension is re-
placed by an underscore (_) placeholder, as in the example below:

Real[_,_] mat

Since the dimension sizes are not known in the type, no implicit allocation of the array vari-
able is possible. Initialization by promoting scalar values to such an array is also not possi-
ble. However, initialization by an array value with well-defined dimension sizes like
Array[150.&,{3,3}] is of course possible.

This kind of declaration is seldom needed in new code apart from the common case of
adding static array types to variables in previously untyped Mathematica code. One possible
use for this kind of declaration is, however, to declare an array variable which (later) is
assigned an array value of unknown size returned by a function:

Real[_,_] mat = FuncUnknownSizedArr[]

Either an underscore (_) or a symbolic name followed by underscore (n_) can be used when
denoting an unknown size of a single dimension.

Named size placeholders like n_ have an advantage in that some type constraints can be
expressed in a general way. For example, the fact that both dimensions of square matrices
are always equal can be expressed without limiting the square matrix type to any specific
size variable or constant:

Real[n_,n_] squaremat

The scope of named dimension-size placeholders (like n_, k_, m_) is limited to the body of
the function in which they are declared as formal parameters. This is convenient for express-
ing size constraints on array parameters and function results. For example, the matrix mul-
tiplication function signature below expresses that multiplication of an n × k matrix by a
k × m matrix gives an n × m matrix as a result.

MatMult[Real[n_,k_] amat_, Real[k_,m_] bmat_]->Real[n,m] := ...

Note that a placeholder variable that occurs more than once is initialized according to the
first occurrence, and that no equality checking for the different occurrences is currently per-
formed.

102 6.2 Array Allocation and Initialization
6.2.3 Summary of Array Dimension Specification

In the two subsequent sections we summarize the different forms of specifying dimension
information in array types. There are two main cases to consider:

• Arrays which are passed as function parameters or returned as function values, where
the actual array value has been previously allocated.

• Declaration of array variables, usually specifying both the type and the allocation of the
declared array.

Array Dimensions for Function Parameters and Results

There are five forms allowed for specifying array dimension sizes in array types for function
arguments and results:
• Integer constant dimension sizes, e.g. Real[3,4].
• Symbolic constant dimension sizes, e.g. Real[three,four].
• Unknown dimension sizes with unnamed placeholders, e.g. Real[_,_].
• Unknown dimension sizes with named placeholders, e.g. Real[n_,m_].
• Unknown dimension sizes with variables as dimension sizes, e.g. Real[n,m].

The dimension sizes can be constant, in which case the size information is part of the type.
Alternatively, the sizes are unknown and thus fixed later at runtime when the array is allo-
cated. Such unknown dimension sizes are specified through named (e.g. n_) or unnamed (_)
placeholders.

All array values which are passed as arguments at function calls have already been
allocated at runtime. Thus their sizes are already determined. These sizes may, however, be
different for different calls. Therefore specification of conflicting dimension sizes through
integer variables in array types of function parameters or results is not allowed, though it is
allowed for ordinary declared variables. Only constants and named or unnamed
placeholders are allowed.

Array Dimensions for Declared Variables

Below are the five different kinds of forms for expressing array dimension information in
variable declarations. The example shows a global variable declaration using the De-
clare[] declarator, which can also be used for local declarations in functions.

The fifth case is where sizes are specified through integer variables. This is needed to
handle declaration and allocation of arrays for which the sizes are not determined until
runtime.

6.3 Array Index Bounds 103
• Integer constant dimension sizes, e.g., for an example array arr:

Declare[Real[3,4] arr];

• Symbolic constant dimension sizes, e.g.,

Declare[Real[three,four] arr];

• Unknown dimension sizes with unnamed placeholders, e.g.,

Declare[Real[_,_] arr];

• Unknown dimension sizes with named placeholders, e.g.,

Declare[Real[k_,m_] arr];

• Unknown dimension sizes which are specified by integer variables such as function
parameters, and local or global variables that are visible from the declaration, e.g.,

Declare[Real[n,m] arr];

Note that Declare is not needed for local variables.
Such integer variables, e.g., n, m, are assumed to be assigned once, i.e. their values

are not changed after the initial assignment so that the declared sizes of allocated arrays
are kept consistent with the values of those variables. This single-assignment property
is not checked by the current version of the system, however. You, the user, are therefore
responsible for maintaining such consistency.

6.3 Array Index Bounds
Obtaining and using array index bounds and dimension sizes is important in general array-
based programming. Below we examine how to obtain and use index bounds in Mathemat-
ica and briefly discuss these issues for the target languages of the code generator.

6.3.1 Array Index Lower Bounds

In Mathematica the lower bound for array indexing is always 1, which is compatible with
traditional mathematical indexing and enumeration notation. The lower bound for indexing
in a numeric array processing language such as Fortran90 is also 1.

Unfortunately the C language and languages derived from C, e.g. C++ and Java, use zero
as the lower bound for indexing of the built-in array type, which is incompatible with
Mathematica. There is, however, no standard object-based array type defined for C++ —
only the old C array construct which is too static and inconvenient to be used for serious
numerical computing. The efficient MathCode array library in C++ is, however, designed

104 6.3 Array Index Bounds
with a lower index bound of 1 in order to be compatible with both Mathematica and with
standard Fortran subroutine libraries. However, when generating Fortran90 code the
MathCode array library is not needed since the array functions are built into the language.

Thus, we have the following situation:

• Mathematica—lower index bound is 1.
• MathCode array library in C++ — lower index bound is 1.
• Fortran90—lower index bound is 1.
• Matlab —lower index bound is 1.
• Java—lower index bound is 0. All index expressions must be converted by adding "1"

to these expressions in generated code. An alternative would be a special MathCode
array library in Java, designed to have a lower index bound of 1.

6.3.2 Dimension Sizes and Upper Index Bounds

The actual sizes of the dimensions of variable-sized arrays can be obtained through a call to
the standard Mathematica function Dimensions, by passing the array as an argument and
returning one or more results depending on the dimensions of the array. The size of a dimen-
sion is the same as the upper index bound of the corresponding dimension for a Mathematica
array. The following example shows how to obtain the dimension sizes for a two-dimension-
al array mat:

dim1 = Dimensions[mat][[1]]
dim2 = Dimensions[mat][[2]]

6.3.3 Declaring Local Arrays with Variable Dimension Sizes

There is a special problem in obtaining and using array parameter dimension sizes which are
needed to declare and allocate local arrays of compatible sizes (this is necessary when im-
plementing general size-independent algorithms for arrays).

The problem stems from the fact that the Mathematica Module[] construct initializes
all local variables at the same time. Therefore, it is not intrinsically possible to obtain the
dimension sizes from the first variables in the list in order to declare and initialize array
variables later in the list. The following example shows how a typed Mathematica function
can be written, within which values of n and m must be available for declaration of the two
local arrays ipiv and Rx:

foo[Real[n_,k_] ain_, Real[k_,m_] bin_]->Real[n,m]:=
Module[{

6.4 When x in a[[x]] is negative, a range check error will be triggered if range checking is
 Integer[n] ipiv,
 Real[m,m] Rx
 },
 ...
]

The example below shows the solution to this problem used by the MathCode compiler, by
using a double Module[] structure. The variables n and m are initialized to appropriate di-
mension sizes in the outer Module, and are subsequently used for declaring and allocating
variables in the inner Module. The above code fragment is thus expanded internally to:

foo[Real[n_,k_] ain_, Real[k_,m_] bin_]->Real[n,m]:=
Module[{
 Integer n= Dimensions[ain][[1]],
 Integer m= Dimensions[bin][[2]]
}, Module[{
 Integer[n] ipiv,
 Real[m,m] Rx
},
 ...
]
]

Negative Indices
In Mathematica negative indices may occur, which is not allowed in Fortran90 or C++.

The use of negative indices in Mathematica indicates access relative to the end of an array.

6.4 When x in a[[x]] is negative, a range check error will be triggered if range
checking is turned on using SetCompilationOptions[CompilerOptions-
>"/CB"]. If range check is turned off (default), the result is unpredictable.
Array Constructor Functions

There are two general data constructor functions for creating arrays in Mathematica, Array
and Table. There are also a few more specialized array constructors.

• Array[elemfunc,{dim1,dim2,...}]. The Array function creates an array object of
the specified dimensions, calling the user-supplied elemfunc function on the indices of
each array element in order to initialize each element. If elemfunc is an undefined
function symbol, e.g. f, symbolic array elements like f[1,3] etc. are left in
unevaluated form. In the current MathCode version elemfunc is restricted to constant
functions. One common special case for elemfunc is 0.0&, which means that each

106 6.4 When x in a[[x]] is negative, a range check error will be triggered if range check-
element is initialized with the real constant 0.0.
• Table[expr,{dim1},{dim2},...]. The Table function creates an array object of

the specified dimensions, initializing each array element by evaluating the expression
expr. A more general form is, for example, Table[expr,{i, imin, imax, istep},
{j, jmin, jmax, jstep},...], in which expr often contains the iterator variables i
and j. The special case Table[0.0,{dim1},{dim2}] creates arrays approximately
10 times faster than the corresponding Array call when executed interpretively in
Mathematica.

• IdentityMatrix[n]. This creates a 2D n x n Integer identity matrix of integers,
with integer constants 1 along the diagonal and zeros elsewhere.

• DiagonalMatrix[vec]. This creates a 2D matrix with elements from the vector vec
along the diagonal.

• Range[]. The Range function occurs in three forms. Range[n] creates a vector of
integer values in the range 1..n, e.g. Range[2] gives {1,2}. Range[start,end] creates
an array (real or integer depending on the start value) of elements starting at start with
stride 1, e.g. Range[2.5,4.5] gives {2.5, 3.5, 4.5}. The three-parameter version
Range[start,end,stride] also specifies the stride when generating the range, e.g.
Range[2.5, 10, 2] gives {2.5, 4.5, 6.5, 8.5}.

6.4.1 Array Dimension Size Functions

Sizes of array dimensions are obtained by calling the Dimensions function in Mathemati-
ca, which returns a short array of integers giving the sizes of each array. The Length func-
tion in Mathematica returns the number of rows when applied to a matrix. Since arrays are
statically typed in C++ and Fortran90, calls like TensorRank, Depth etc. become compile-
time constants in generated code. Using Dimensions[] in Mathematica is usually the most
efficient choice, except for 1-dimensional arrays, where Length[] is slightly more effi-
cient.
• Size of dimension i for an array arr. The size of dimension i of an array arr is usually

expressed as Dimensions[arr][[dim]] in Mathematica. An alternative way is to use
Length, where, for example, Length[arr] gives the size of dimension 1 and
Length[arr[[1]]] gives the size of dimension 2 for a matrix. Thus,
Length[Array[0&,{4,3}]] gives 4.
For example, the process for obtaining the size of the second dimension of a 2Dmatrix

is compiled to a Fortran90 call size(t,1). The numbering of dimensions in Fortran90
code is the opposite of numbering in Mathematica. Analogously for dimensions up to 4.
• TensorRank[arr]. This is equivalent to Length[Dimensions[arr]] and returns

the number of dimensions of a homogenous array object. Remember that homogenous

6.4 When x in a[[x]] is negative, a range check error will be triggered if range checking is
array objects, i.e. array objects where all elements have the same type, may be compiled
to C++ or Fortran90.

• Depth[arr]. This is essentially TensorRank[arr]+1 for homogenous array objects,
i.e. the function gives the number of dimensions+1.

• VectorQ[arr]. Gives True for 1-dimensional arrays.
• MatrixQ[arr]. Gives True for 2-dimensional arrays.

108 6.4 When x in a[[x]] is negative, a range check error will be triggered if range check-

6.4 When x in a[[x]] is negative, a range check error will be triggered if range checking is
Chapter 7 Compilation and Code
Generation

MathCode provides a flexible programming interface that controls code generation and ex-
ecution facilities. This chapter presents this interface in more detail. An easy-to-use subset
of these facilities was presented earlier in Chapters 1 and 2. As briefly described in Chapter
1, typed variable declarations and function definitions can either be directly translated into
efficient target code (e.g. Fortran90), or function bodies can first be symbolically evaluated
and then translated during the first phase of the code generation process.

Mathematica
MathCode
Generator

Mathematica
expressions

Call symbolic evaluation

 foomain.f90 foo.f90 fooif.f90 foo.tm

MathCode
converter

foo.mci

MathLink calls

 footm.c

foo.mh

 footm.objfooif.objfoo.objfoomain.obj

fooml.exefoo.exe

Linker

F90 Library
MathCode

Optional external
libraries

callbacks

MathLink
calls

Fortran90 compiler C compiler

Figure 7.1: Generating Fortran90 code with MathCode, for a package called foo.

110 7.1 Overall System Structure
7.1 Overall System Structure

Compilation and code generation in the MathCode context can be described from the per-
spective of a number of largely orthogonal dimensions. For example, to which type of target
code should the Mathematica code be translated? What is the compilation scope, i.e. which
parts of the Mathematica program should be translated? Should the Mathematica code be
symbolically evaluated as the first step of code generation or not? Should the compiled code
be integrated, i.e. be set up to be transparently callable from Mathematica, or should it just
be placed in an external file? Others issues concern how to invoke the code generator.

The typical case of generating Fortran90 code from a Mathematica package (e.g. called
foo), is depicted in Figure 7.1. Some parts of the MathCode code generator run within
Mathematica (MathCode converter), but most of it resides in a separate process called via
MathLink (MathCode generator). This is invisible to the user, for whom the code generator
appears to be an ordinary Mathematica package.

Partially translated Mathematica expressions analyzed by the MathCode converter are
written to the intermediate form in the file foo.mci which is sent over to the external
process, MathCode generator. Sometimes the MathCode generator needs to call back to
Mathematica to perform symbolic evaluation of expressions. In this case the result of the
symbolic evaluation is sent to the MathCode generator via Mathlink calls.

The package foo is translated to Fortran90 code in the file foo.f90. A MathLink
template file foo.tm, together with MathLink interfacing code in files fooif.f90 are also
produced. The mprep tool from the standard Mathematica distribution is used by
MathCode to generate the file footm.c from foo.tm. A main program file foomain.f90
is produced for the case when the user wants to build a stand-alone executable from the
generated code. The MathCode header file foo.mh is a Mathematica package file which
lists all functions generated by MathCode from the package foo and as well as types
referenced by those function signatures. The compilation options used when the foo
package was compiled to Fortran90 are also stored in the file foo.mh. The information in
the MathCode header file is used by InstallCode, and in situations when code is
generated for packages using typed functions from other packages.

7.2 Compilation and Code Generation Aspects
There are four main aspects of code generation in MathCode which are largely orthogonal,
i.e. they describe independent properties that can be combined in almost any way.

7.2.1 Target Code Type

The target code option specifies which type of code should be produced by the code gener-
ator. The only available choices at this time are C++ and Fortran90, but other options such

7.2 Compilation and Code Generation Aspects 111
as Java, or Mathematica byte code might become available in the future.
The code generator produces efficient code in Fortran90 that is often 1000 times faster

than interpreted Mathematica code, or 100 times faster than internally compiled code.

7.2.2 Evaluation of Symbolic Operations

Many Mathematica operations are symbolic in nature, i.e. they produce symbolic Mathe-
matica expressions. Examples are symbolic integration and differentiation, simplification,
substitution of expressions, etc. Such symbolic operations are not useful to translate to
strongly typed languages, e.g. C++ or Fortran90, since this would entail reimplementation
of a large part of the functionality of a computer algebra system, and would probably not
give better performance than the original system.

However, most symbolic operations eventually produce symbolic expressions which are
(numerically) computable when symbolic variable names are replaced by data values. This
makes it useful to perform all symbolic operations before generating the target code, since
the result of the symbolic operations in most cases will be executable expressions without
symbolic operations. It is of course also possible to partially evaluate expressions with a
mixture of symbolic and numeric operations before passing those on to the code generator.

The code generator is informed about which functions should be symbolically
evaluated/expanded in conjunction with code generation by setting the
EvaluateFunctions option, see Section 7.3.2 on page 113.

7.2.3 Integration

The integration property determines whether the compiled code will be integrated for direct
execution with Mathematica, or whether the generated code should simply be stored in an
external file. Such integrated functions are callable in exactly the same way as internal in-
terpreted Mathematica functions.

There are several aspects of code integration:

• Compiled code integration. Compiled function definitions can be integrated to be
directly callable from Mathematica. Alternatively, they are simply linked into an
executable for stand-alone execution.

• External code integration. Function definitions in external libraries or software modules
can be integrated to be callable from Mathematica and/or from generated code. This
option is not available in the current release of MathCode F90.

• Callbacks. Some Mathematica functions cannot be translated to external code. Such
function calls can be evaluated by callbacks to MathematicaThis option is not available
in the current release of MathCode F90.

112 7.3 Invoking the Code Generator
7.3 Invoking the Code Generator
The code generation facilities can be invoked by calling a number of Mathematica func-
tions, defined in the Mathematica package MathCode. Some of these functions are actually
just stubs which call corresponding routines in the MathCode code generator process via
MathLink. Below we describe the available code generation functions. Note that in all Math-
Code functions taking a package argument, the package name can be given with or without
backtick (‘).

7.3.1 CompilePackage[]—the Primary Code Generation Function

The function CompilePackage controls the compilation of entire Mathematica packages
which contain typed and/or untyped function definitions, variable declarations etc. Howev-
er, only typed definitions are compiled. Untyped definitions will be ignored.

CompilePackage[packagename]

This function generates code for a Mathematica package. For example:

CompilePackage["mypackage"]

It can also be called with the customary backtick:

CompilePackage["mypackage‘"]

Note! The package name "mypackage‘" (or "mypackage") refers to the context name
rather than the package itself. CompilePackage["mypackage‘"] searches typed vari-
ables and function in the context "mypackage‘". CompilePackage["Global‘"] is
therefore generating code for all types of variables and functions belonging to the default
context "Global‘".

If no package name is provided as an argument to CompilePackage (or to
BuildCode, MakeBinary), the most recent package name used in calls to these functions
is used as default. The initial default is "Global’". For example:

CompilePackage[]

Different Items to be Compiled

CompilePackage compiles the different items in the package as follows:

• Variable declarations
All typed global variables declared in a Mathematica package to be compiled (e.g.

7.3 Invoking the Code Generator 113
package foo) are translated to declarations in Fortran90.

• Functions
The default is to translate typed Mathematica functions into Fortran90 without any
symbolic evaluation. This produces target code similar to the original Mathematica
code, i.e. loops in Mathematica become loops in Fortran90 etc.

• Functions with symbolic operations
Functions which contain symbolic operations such as symbolic integration, substitution
etc. should be symbolically expanded (see Section 7.5) before final code generation.
Those functions should be indicated using the option EvaluateFunctions described
in Section 7.3.2 below.

• Main program function
In the case that a stand-alone executable is to be created, the option
MainFileAndFunction described on page 114 can be used to specify the program
part needed in such an executable.

7.3.2 Optional Parameters to Control Code Generation

There are several optional parameters to CompilePackage that provide more detailed con-
trol over the code generation process. However, instead of passing such parameters to Com-
pilePackage it is usually more convenient to set these options via calls to SetCompila-
tionOptions which are placed at the beginning of the package to be compiled.

SetCompilationOptions

Additional information needed to guide the compilation process can be specified using op-
tional parameters to CompilePackage and/or MakeBinary, or by inserting calls to Set-
CompilationOptions within the package to be compiled. Section 7.4 on page 118 shows
the recommended placement of such calls.

Below we briefly examine the available options.

Priority of Parameter Settings

Options passed directly to CompilePackage and MakeBinary have the highest priority,
i.e. they override the settings made via SetCompilationOptions. If a compilation option
is cleared, any existing individual attribute settings will apply.

114 7.3 Invoking the Code Generator
Option EvaluateFunctions

As mentioned above, CompilePackage automatically compiles all typed functions and
variables in the package. The default assumption is that those functions should be compiled
without symbolic evaluation using CompileFunction.

However, side-effect free function bodies which contain symbolic operations (see
Section 7.5 on page 119) should be compiled using CompileEvaluateFunction instead
of CompileFunction. The set of functions which should be compiled in this way can be
specified using the EvaluateFunctions option. For example:

CompilePackage["mypackage",EvaluateFunctions->{func1,func2}]

or defining SetCompilationOptions in the package context:

mypackage‘SetCompilationOptions[EvaluateFunctions->{func1,func2}]

Option UnCompiledFunctions

This option prevents some typed functions in the package from being compiled. This might
be the case for functions which are only meant to be expanded within the body of another
symbolically evaluated function. For example:

SetCompilationOptions[UnCompiledFunctions->{sin,cos,arcTan}]

See Section 2.3.5 on page 42 for an example where this option is used.

Option DisabledMathLinkFunctions

This option (used in very rare cases) prevents some typed functions of the package from be-
ing called via MathLink. By default all functions in the package given as argument to Make-
Binary can be called by MathLink from the Mathematica environment. This option might
be useful in the case that the installed MathLink function confuses Mathematica, or if its call
template is generated with errors. This is primarily intended as a temporary workaround in
case of errors. Example:

SetCompilationOptions[DisabledMathLinkFunctions->{foo1,foo2}]

Option MainFileAndFunction

In the case that a stand-alone executable is to be created, the option MainFileAndFunc-
tion can be used to specify the program part needed in such an executable. The argument
string specifies the text of the program part in the file foomain.f90. (see section 7.6.1
regarding the StandAloneExecutable option).For example:

7.3 Invoking the Code Generator 115
SetCompilationOptions[
 MainFileAndFunction->"i = i+1"]

or

CompilePackage["foo",
 MainFileAndFunction->"i = i+1"]

Note that MathCode generates the contents of the foomain.f90 file. The example above
will generate the following Fortran90 code:

 PROGRAM MathCodeStandaloneMain
 USE mc_Global
 IMPLICIT NONE
 i = i+1
 END PROGRAM MathCodeStandaloneMain

Option NeedsExternalLibrary

This option informs about the need for external libraries where called external functions may
be defined. This is an option to SetCompilationOptions and MakeBinary.

MakeBinary[NeedsExternalLibrary->{"extlib1", "extlib2"},
 NeedsExternalObjectModule->{"file3"}]

Option NeedsExternalObjectModule

This option informs about the need for external modules where called external functions
may be defined. This is an option to SetCompilationOptions and MakeBinary.

MakeBinary[NeedsExternalObjectModule->{"file3"}]

Note that an object module fee.obj produced by MathCode corresponding to a package
fee that is used (by e.g. calling Needs["fee"]) within another package foo, is automat-
ically linked into the binaries for foo by MakeBinaries["foo"], if fee.obj is in the
current directory. The option NeedsExternalObjectModule is not needed in that case.

Option MacroRules

This option specifies a set of rules that are applied to the right-hand side of every function
before compilation. Example:

SetCompilationOptions[MacroRules->{Sin[x_]/Cos[x_]->Tan[x_]}]

116 7.3 Invoking the Code Generator
The above basically causes the following Mathematica replacement rule to be applied to ev-
ery function body to yield the code to compile:

funcbody //. {Sin[x_]/Cos[x_]->Tan[x_]}

Option DebugFlag

The option DebugFlag (value True or False) controls whether or not a debugging trace
of the code converter is printed. This flag is mainly intended for internal use by the Math-
Code developers.

SetCompilationOptions[DebugFlag->True]

Option Language

The Language option (currently only C++ and Fortran90 is supported) controls which tar-
get language MathCode will generate code for. MathCode will use the default compiler for
the specified language, which is chosen at the installation of MathCode. In order to use a
certain language, you need a MathCode license for that language. Examples of selecting the
language:

CompilePackage[Language->"Fortran90"]

CompilePackage[Language->"C++"]

The system can reject the request if generating code in the chosen language is not
permitted by the license check.

Option Compiler

The Compiler option makes it possible to select which compiler should be used to compile
generated code in a given target language. The option value should be one of the symbolic
names (strings) of compilers defined during MathCode installation and stored in the Math-
CodeConfig.m configuration file. The Compiler option to MakeBinary overrides the
default compiler specified for the selected language. Example:

MakeBinary[Compiler->"df60"]

As usual, BuildCode[] can be given both CompilePackage[] and MakeBinary[] op-
tions. The following example will generate Fortran90 code and use the "df60" compiler
to compile this code, overriding any default specification:

BuildCode[Language->"Fortran90", Compiler->"df60"]

7.3 Invoking the Code Generator 117
Option CompilerOptions

CompilerOptions is an option to MakeBinary[]. CompilerOptions->"opts" adds the
string "opts" to the set of options given to the Fortran90 compiler. The default value of this
option is "". The makefile variable CCOPT in the makefile is assigned the string "opts". The
file MathCodeConfig.m contains a string with the name of the makefile used by Math-
Code to produce executable binaries. See also Section 7.6.1 about MakeBinary for further
information. Example:

SetCompilationOptions[CompilerOptions->"/CB"]

or

MakeBinary["Foo", CompilerOptions->"/CB"]

This assigns the string "/CB" as the value of the makefile variable CCOPT, which subse-
quently can be used within compilation and linking commands, as seen below:

ifort -c Global.f90 /CB

The option /CB tells the computer to perform range checking for array indexes at runtime

Option LinkerOptions

LinkerOptions is an option to MakeBinary[]. LinkerOptions->"opts" adds the
string "opts" to the set of options given to the linker. The default value of this option is "".
The makefile variable LINKOPT in the actual makefile is assigned the string "opts". See also
Section 7.6.1 about MakeBinary for further information. An example:

The option -lm requests linking with libm.a library on Unix systems and for GCC compilers

SetCompilationOptions[LinkerOptions->"/MAP"]

The option /MAP tells to the linker to create a map file

Option MathCodeMakeFile

MathCodeMakeFile is an option to MakeBinary[] that makes it possible to replace the
standard makefile with a user specified one. MathCodeMakeFile->"filename" specifies
the makefile template to be used for building the executables. The file MakefileCon-
fig.m contains a string with the name of the makefile used by MathCode to produce bina-

118 7.4 Standard Layout of a Package to be Compiled
ries.

MakeBinary["Foo",MathCodeMakeFile->"/home/putte/mymake.mak"]

This command results in the use of the makefile mymake.mak instead of the default make-
file.

7.4 Standard Layout of a Package to be Compiled
Before going into more detail about code generation we present the layout of a typical Math-
ematica package (named by the dummy name foo) to be compiled by MathCode. All ex-
ample packages in Chapter 2 have this structure.

The call to SetCompilationOptions regarding functions is best placed after the
sections for public names and package global names since those names need to be declared
first, as in the example package foo below. The information about external libraries, on the
other hand, can be specified in the same place or closer to the beginning of the package. Note
that the object module for fee1.obj is automatically passed to the linker if the package
fee1 has been compiled before.

The typical recommended package layout is as follows:

Needs["MathCode‘"]

BeginPackage["foo‘",{MathCodeContexts,"fee1‘",...}]
...

(* Public, exported names *)
...

(* Private, package-global names *)
...

(* Possible setting of compilation options for certain functions*)
SetCompilationOptions[EvaluateFunctions->{func1,func2}];
...

(* Private implementation section *)
Begin["‘foo‘Private"]
...

End[];
EndPackage[];

7.5 Code Generation of Symbolically Evaluated Expressions 119
7.5 Code Generation of Symbolically Evaluated Expressions
The following example illustrates code generation for (usually very large) symbolic expres-
sions that are created by Mathematica during symbolic evaluation when calling Com-
pilePackage with the EvaluateFunctions option. Common subexpression elimina-
tion is performed on such code in order to break it into pieces and to make it execute more
efficiently.

Common Subexpression Elimination

The code generator takes advantage of the fact that pure (i.e. side-effect free) functions like
sin, cos, and tan are devoid of side-effects in order to eliminate common subexpressions that
the Fortran90 compiler sometimes cannot optimize since it normally cannot assume that all
library functions are side effect free. Note that it is necessary to eliminate all common sub-
expressions (even if the compiler can handle the ones involving only arithmetic operators)
so that we do not miss any opportunities for further optimizations. Temporary variables
which hold the results of subexpressions are also introduced. Thus the code generator must
derive the type of each subexpression, including the types of intermediate arrays.

Even without the common subexpression elimination, some partitioning of the symbolic
expressions would be necessary since the expressions may otherwise become so large that
the target language compiler cannot handle them—many compilers have a built-in hard limit
on the size of expressions.

A Short Example

As an example, consider the following Mathematica function.
func[Real a_] -> Real :=

Cos[a+5] * Sin[a]*Sin[a+5] + Sin[a]*Cos[a]*Cos[a]*(a+5);

The code generator invoked by

CompilePackage[EvaluateFunctions->{func}].

The following Fortran90 code is generated:
function func(a) result(mc_O1)
use MathCodePrecision
use MathCodeSheep
implicit none
real(mc_real), intent(in) :: a
real(mc_real) mc_O1
real(mc_real) mc_T1
real(mc_real) mc_T2
real(mc_real) mc_T3

120 7.6 Building Executables
real(mc_real) mc_T4
real(mc_real) mc_T5
real(mc_real) mc_T6
real(mc_real) mc_T7
real(mc_real) mc_T8
real(mc_real) mc_T9
mc_T1 = 5+a
mc_T2 = sin(mc_T1)
mc_T3 = sin(a)
mc_T4 = cos(mc_T1)
mc_T5 = mc_T4*mc_T3*mc_T2
mc_T6 = cos(a)
mc_T7 = mc_T6**2
mc_T8 = mc_T1*mc_T7*mc_T3
mc_T9 = mc_T8+mc_T5
mc_O1 = mc_T9
end function func

The only common subexpressions in this example are 5+a (stored in mc_T1 and used three
times) and Sin[a] (stored in mc_T3 and used twice). For complicated expressions in re-
alistic applications, the common subexpression elimination often reduces the size of the
generated code by a factor of ten or more.

Different numerical programs can be generated from the same Mathematica program
depending on how much information is supplied before generating and compiling the code.
If Mathematica variables are declared as constants and initialized to constant numerical
values before such code generation, symbolic simplification usually results in a more
efficient but less general program. This can be viewed as a form of partial evaluation of the
program.

7.6 Building Executables
The building process compiles all produced Fortran90 files and links them into one (or two)
executables. An overview is presented in figure 7.2

7.6 Building Executables 121
foomain.exe
Numerical

Package(s)
fooml.exe

foo.f90

foomain.f90
footm.c
foo.tm

Library

fooif.f90

Figure 7.2: Building two executables from package foo, possibly including numerical libraries.

7.6.1 MakeBinary["packagename"]

The call MakeBinary["foo"] builds all the files for the stand-alone version of the appli-
cation (e.g. foo.exe if the package is called foo), or for the interactively callable Math-
Link version (e.g. fooml.exe). This process includes compiling the generated Fortran90
source code using an externally available Fortran90 compiler which should already be in-
stalled on the computer being used. See Chapter 9 regarding system specific information
about computer platforms and compilers.

If no arguments are supplied to MakeBinary, it will assume that all packages translated
to Fortran90 by the most recent calls to CompilePackage should be compiled using the
external Fortran90 compiler and linked into a MathLink callable executable (e.g.
fooml.exe).

Setting Compilation Options for the Fortran90 Compiler

Usually there is no need to use CompilerOptions->"opts" to manually specify the options
given to the Fortran90 compiler. The default value of this option is "", which is the normal
case. An example:

MakeBinary["Foo", CompilerOptions->"/CB"]

This assigns the string "/CB" as the value of the makefile variable CCOPT, which subse-
quently can be used within compilation commands within the makefile. See page 117 for
more information.

Controlling Type of Binary Executable

By default, the MathLink version of the binary executable is built by a call such as Make-
Binary[]. This is equivalent to the call:

122 7.7 Integration
MakeBinary[StandAloneExecutable->False]

However, the following call instead builds a stand-alone executable:

MakeBinary[StandAloneExecutable->True]

Both versions can be built by two successive calls to MakeBinary:

MakeBinary[StandAloneExecutable->False]
MakeBinary[StandAloneExecutable->True]

7.6.2 BuildCode["packagename"]

The call BuildCode["foo"] calls CompilePackage["foo"] and then MakeBina-
ry["foo"], i.e. a call to BuildCode["foo"] will make a complete code generation,
compilation and linking of the Mathematica package "foo‘".

BuildCode["foo"]

7.7 Integration
As already mentioned, the integration property determines if compiled or external code will
be integrated for direct execution with Mathematica. Such integrated functions are callable
in exactly the same way as internal interpreted Mathematica functions.

7.7.1 Calling Compiled Generated Code via MathLink

Integrated functions are compiled and linked into an executable, e.g. as fooml.exe in
Figure 7.3 below, which is connected to Mathematica via MathLink.

Generated code to be executed stand-alone, i.e. in a non-integrated fashion, is linked into
a stand-alone executable, for example foo.exe in Figure 7.3.

7.7 Integration 123
foo.exe

Mathematica
Needs["foo‘"]

fooml.exe
MathLink

Figure 7.3: Integrating generated code from the package foo with Mathematica. Functions in
fooml.exe can be called interactively from Mathematica via MathLink. The binary file foo.exe
can be used for non-integrated stand-alone execution.

The following MathCode functions control the integration of compiled code with Mathe-
matica. It is possible to switch back and forth between executing the compiled versions of
Mathematica functions and the original interpreted versions by successively calling Acti-
vateCode[] and DeactivateCode[]. This is useful for testing purposes and perfor-
mance comparisons. The names of both interpreted and compiled functions are always kept
within the original context.

Only the functions within the package specified as an argument to MakeBinary or
BuildCode will be made callable via MathLink. If multiple compiled packages are linked
together, functions in other packages are currently not made automatically available via
MathLink. The workaround is to insert stub functions into the main package whose only
purpose is to call those functions you want to access interactively.

• InstallCode[]. Installs compiled code for possible execution from within
Mathematica through stub functions for calls via MathLink. MathLink stub1 functions
to generated code are stored under ExternalDownValues. Each interpreted function
definition in the relevant package is moved from DownValues[funcname] to
SourceDownValues[funcname]. Then an ActivateCode[], see below, is
performed. Thus, InstallCode[] performs the following actions:
– Reads the MathCode header file corresponding to the package, to find the list of

functions for which there is external code generated and compiled.
– Saves interpreted function definitions for the relevant functions under

1. A stub function is an interface function that performs no action of its own apart from
possibly re-ordering/re-packaging the function arguments before passing them on to the
function that performs the actual work.

124 7.7 Integration
SourceDownValues, and clears DownValues for these functions.
– Performs Mathematica Install[] if the generated code is callable via MathLink,

and saves the stub functions under ExternalDownValues[].
– Saves the MathLink descriptor to the open MathLink connection, so that it can be

closed later by UninstallCode[]. In the case of compiled bytecode this is not
necessary.

• ActivateCode[]. When the compiled code is activated, the interpreted function
definitions are removed and saved under SourceDownValues[funcname] for each
function. Instead the compiled function definitions are activated for possible execution
by setting DownValues[f] to ExternalDownValues[f].

• DeactivateCode[]. Deactivates previously installed and activated compiled code, by
restoring the interpreted function versions if available, i.e. resetting DownValues to
SourceDownValues.

• UninstallCode[]. First perform a DeactivateCode[]. Then close possible open
MathLink connections and remove MathLink stub functions.

Code Storage Places

Where is compiled Mathematica code stored? We have already seen (Figure 7.1) that gen-
erated code in languages like C++ or Fortran90 is placed in external files, which are then
further compiled and linked into a binary executable file.

However, internal storage places within Mathematica are needed both for storing the
original interpreted definitions of compiled Mathematica functions, the stub functions
needed for possible communication with compiled code via MathLink, and compiled
bytecode in case Mathematica functions are compiled to bytecode. Information about these
storage places is not necessary to know in order to use MathCode, but might be of some help
for the advanced Mathematica programmer.

The following code storage places are employed by MathCode within Mathematica:

• DownValues. The currently active definition rules for a Mathematica function f are
obtained through DownValues[f], or assigned by DownValues[f]=...

• SourceDownValues. The standard interpreted Mathematica source versions of the
functions are saved here when the interpreted versions are replaced by stub functions or
compiled versions.

• ExternalDownValues. Function definitions which are ExternalCall expressions
calling external executable code via MathLink. ExternalCall is a built-in
Mathematica function used to call external MathLink objects.

7.8 Providing Missing Mathematica Functions 125
7.7.2 Integration of External Libraries and Software Modules

The integration of external software means that external code, available in libraries or object
modules and originally implemented in languages like Fortran, C, C++, is integrated with
the Mathematica execution environment so that functions in the external code can be trans-
parently called from within Mathematica. Such code is typically implemented manually and
has not been generated by the MathCode code generator. See Section 7.7.1 regarding inter-
active calling via MathLink for functions in other modules than the main module.

7.7.3 Callbacks to Mathematica

Currently this option is available in MathCode C++ only

7.8 Providing Missing Mathematica Functions
The MathCode translator directly supports a set of basic Mathematica functions and opera-
tions, as defined in Appendix A. There are still a number of standard Mathematica functions
not yet included in this set.

Standard functions can be re-implemented by hand.

7.8.1 The system Package

The user can supply his or her own implementations of missing functions by providing al-
ternative Mathematica function implementations in the system package. It is intentionally
named system (lower-case!) to mimic the Mathematica System context which contains
most standard functions. The system package is by default translated and, if needed, in-
cluded in built executables.

The available array slice operators in MathCode simplify re-implementation of certain
list-operations, which are not directly supported by MathCode but are indirectly supported
as array slice operators.

The object module system.obj (system.o under Unix) is included by default when
linking executables if the compiled package uses a Mathematica function not in the
compilable subset of MathCode but implemented in the system package. However, the
intention is to use the system for such standard functions which have already been
implemented and tested. This is to avoid unnecessary recompilation of already implemented
functions while the user is developing implementations of additional functions. At delivery,
the MathCode system contains a system package and a system object module containing
a number of Mathematica functions which have been re-implemented in this way.

The header file system.h is automatically included, if needed, in produced Fortran90

126 7.9 Fortran90 Fortran Code Compilation from Command Shell
code so that system functions can be called from generated code. Additionally, the code
generator performs the special action of creating MathCode header files when compiling
system. This file, which is always loaded when MathCode is started, is called system.mh,
and contains only typed Mathematica external declarations of the compiled functions.

An example of a system package is provided as a system.nb notebook file. It currently
resides in "MathCode/lib/stdpackages/src/". See UsingSystem.nb demo which
explains how functions from System.nb should be used. The contents of this file depend on
MathCode version, used language (C++ or Fortran) and attached libraries.

7.9 Fortran90 Fortran Code Compilation from Command Shell
Instead of using MakeBinary[] call every time, you can also use the standard command
shell for compilations.

7.9.1 Command Shell Compilation in Windows using make

MakeBinary creates the command script named packagename.cmd. The shell command:

make -f packagename.cmd

invokes the make utility, which in turn invokes the Fortran90 compiler and linker.

7.9.2 Command Shell Compilation in Windows using nmake

The shell command:

nmake @packagename.cmd

invokes the nmake utility, which in turn invokes the Fortran90 compiler and linker. Either
the stand-alone or the MathLink version of the executable file is created depending on the
setting of the option StandAloneExecutable. System requirements are described in the
MathCode distribution.

7.9.3 Command Shell Compilation in UNIX

MakeBinary creates the make file packagename.unx. The UNIX command

make -f packagename.unx

invokes the make utility, which in turn invokes the Fortran90 compiler and linker. Either
the stand-alone or the MathLink version of the executable file is created depending on the

7.9 Fortran90 Fortran Code Compilation from Command Shell 127
setting of the StandAloneExecutable option. UNIX system requirements are described
in the MathCode distribution.

128 7.9 Fortran90 Fortran Code Compilation from Command Shell

7.9 Fortran90 Fortran Code Compilation from Command Shell 129
Chapter 8 Interfacing to External Libraries

Currently interfacing to external libraries is available in MathCode C++ only.

130 7.9 Fortran90 Fortran Code Compilation from Command Shell

9.1 Files in the MathCode Distribution 131
Chapter 9 System and Installation
Information

MathCode F90 is currently available only for Windows.

9.1 Files in the MathCode Distribution
The following files and directories should appear within the Mathcode directory after instal-
lation:

File or directory Explanation
DemosF90 A directory of notebook files of runnable demo examples.
System A directory of system executable files, both Mathematica.m files

and binary files. The binary files are platform dependent.
lib A directory of system libraries necessary for compilation and link-

ing generated code.
lib/stdpackages Pre-compiled packages containing re-implementations of standard

Mathematica functions absent in the MathCode library or the stan-
dard Fotrtan90 library.

lib/stdpackages/src Notebook and Fortran90 source code of the system and other pack-
ages.

Doc This directory contains the PDF version of the MathCode manual.
Doc/ReleaseNotes.nb Release notes with additional information since this manual was

printed.

9.2 System-specific installation information
Specific information on the installation procedure for each platform is distributed separately
with MathCode. See special leaflets and the distribution CD, as well as electronically avail-

132 9.3 ReadMe Information and Release Notes
able information.

9.3 ReadMe Information and Release Notes
ReadMe information and release notes on changes and additions to MathCode since this
manual was printed are available in the notebook ReleaseNotes.nb.

9.3 ReadMe Information and Release Notes 133
Chapter 10 Trouble Shooting

When using MathCode to compile a typed Mathematica package, you will occasionally en-
counter errors in your package, or you might have used commands and constructs not sup-
ported by MathCode.

mypack.nb mypack.m

mypack.err

mypackml.exe

Phase 1

Phase 2

Fortran90

Linker

compiler

mypack.mci

mypack.obj

mypack.f90

Figure 10.1: Phases of generating Fortran90 code for a Mathematica package mypack and
compiling into binary code. Object file and executable file extensions are shown according to
Windows conventions.

When the compiler finds errors and/or constructs that it cannot understand, certain error
messages are reported immediately, whereas other error messages are written out into spe-

134 10.1 Code Generation Phases
cial.err and.clog files. For example, if you compile a package called mypack, and the
compilation terminates for some reason, you can look for error messages in both files my-
pack.err and mypack.clog.

Before going into more detail about different categories of errors and how to find and
correct them, it is useful to gain some insight into the different translation phases of the code
generator and their relation to different classes of errors.

10.1 Code Generation Phases
The process of compiling typed Mathematica packages to Fortran90 code and executable
binary code consists of several phases, depicted in Figure 10.1. This figure shows an exam-
ple package mypack translated to be executed via a MathLink connection.

The first phase performs a preliminary analysis and transforms some Mathematica
constructs into combinations of simpler constructs. This phase currently performs almost no
type checking, so most type errors will be passed on and reported in the next phase. The
emitted MathCode intermediate code file mypack.mci is in many cases quite close to the
original Mathematica package.

The second phase performs the bulk of the code generation to Fortran90. Type checking
needed for code generation is also performed. However, not all static type errors will be
detected here—some will be passed on and detected by the Fortran90 compiler. The
emitted code will be stored in mypack.f90. Syntax errors in the intermediate file
mypack.mci are reported in the file mypack.err.

Finally, the Fortran90 compiler will compile mypack.f90 into object code, which is
linked into a binary executable together with possible external library files and object
modules. Compilation errors are collected in mypack.clog

It is helpful to perform more error checking in earlier phases to be able to report errors
in a form more closely related to the original Mathematica program. Still, most error
messages are rather easy to understand since both the intermediate file mypack.mci and the
Fortran90 file mypack.f90 are quite recognizable in terms of the original source code.

10.2 Error Categories
Different categories of errors can be detected by MathCode, such as errors in the syntactic
form of expressions (syntax errors), undeclared functions/variables and type inconsistencies
(semantic errors), and missing object code modules when linking object code into a binary
executable.

10.2 Error Categories 135
10.2.1 Packaging Errors - Missing Functions

CompilePackage should always report the number of functions you expect to compile
plus one. The extra function packagenameInit is an initialization function for global vari-
ables, which is always generated even for empty packages.

If this is not the case, some functions are missing. Compile using DebugFlag->True
and look for a line similar to the following:

Found generateFunctions={Hold[faa], Hold[fee], Hold[foo],
Hold[fxx], Hold[ObjfilesInit]}

If one of your functions is missing there, you may have forgotten to write the function name
after BeginPackage. If all of your functions are missing you may have specified the
wrong package name somewhere. Package names should always be spelled identically and
are case-sensitive.

10.2.2 Syntactic Errors

Most syntax errors are checked immediately by the Mathematica parser when reading func-
tion or variable definitions. However, typed Mathematica is more restrictive than standard
untyped Mathematica. Also, many “syntax” errors and type errors that would go undetected
in Mathematica until the erroneous function is executed will be reported by MathCode al-
ready during code generation.

For example, the function func2 presented below is a typed Mathematica function defini-
tion causing syntax errors, since the function argument n must have type MyType which is
not a valid type:

func2[MyType n_] -> Integer:= Module[{Integer k}, k = k + 1; k]

The presence of syntax errors is reported by CompilePackage, e.g. as follows:

Ccompiler::MathCode: MathCode:Error messages:
7 lines of messages found. See listing in Global.err . Inter-
mediate code in Global.mci.

Detailed error messages from the syntax analysis are stored in the file Global.err,
(this name depends on your package name) and may appear as follows:
6, 18: Error syntax error
6, 18: Information expected tokens:, []
6, 18: Repair token inserted:]
6, 18: Repair token inserted: ;

136 10.2 Error Categories
6, 19: Error syntax error
6, 19: Information expected tokens: ; [:=
6, 22: Information restart point

Note that the line number (6) and character number within the line
(18) are given with respect to the file Global.mci. This
intermediate file is the result of transformations of functions in
packages submitted for compilation. These transformations are
usually local with respect to the original code. Therefore, the
meaning of these somewhat cryptic messages can easily be found by
inspecting Global.mci at the indicated line number and character
positions.

10.2.3 Semantic Errors
If there are semantic errors during code generation, e.g. type inconsistencies and
references to undeclared variables or undeclared functions within a function, this will
cause an error message from CompilePackage.If a function is defined as

func3[Real n_] -> Integer :=
 Module[{Integer[3] k}, k = p; k]

then the messages produced are:

Ccompiler::MathCode: MathCode:Error messages:
7 lines of messages found. See listing in Global.erf.
Intermediate code in Global.mci. These errors may cause
Fortran90 compiler messages.

0, 0: Note In function Global`func3:
0, 0: Error Incompatible types in return statement :
0, 0: Error Assigned to "Output (return) parameter no. 1"
0, 0: Error Of type Integer
0, 0: Error Assigned from k
0, 0: Error Of type Array [3] of Integer
0, 0: Error Un-defined symbol: p

The type inconsistency occurs between the returned expression and the return type of
the function.

The variable p is used but it is never defined.

137
10.2.4 Errors During Fortran Compilation and Linking

Sometimes errors occur during the compilation and linking of generated Fortran90 code,
which is performed by MakeBinary[]. These messages are presented to the user in the fol-
lowing form:

Ccompiler::error: Executable file is not produced due to an
error.The following command returned an error: nmake
@Global.cmd > Global.clog. See file Global.clog for more
details.

Messages from compiler appear, for example, if the Fortran90
compiler recognizes syntactic or semantic error in the generated
code, and can be considered as internal errors of MathCode since
the system should have performed more complete error checking
before emitting erroneous Fortran90 code.

10.2.5 Internal Code Generator Errors

Occasionally internal errors in the MathCode code generator may occur, e.g., the executable
om.exe crashes or stops waiting for a message. In this case you should interrupt evaluation,
e.g. via the menu command Kernel/Quit Kernel (this stops all processes linked with Math-
link), and inspect the filesGlobal.mci and Global.err for error messages.

Such situations can be caused by errors in your Mathematica functions, but can be
considered internal errors of MathCode since the system should have detected and reported
such errors without crashing.

10.2.6 Long Compilation Times

In certain situations, using MathCode to compile Mathematica functions with very large
bodies containing numerous array slice operations, e.g. on the order of many thousands of
lines, may incur unacceptably long times for code generation. A temporary pragmatic fix for
this problem is to divide the large function into several smaller functions and call these func-
tions from the original function.

10.2.7 Internal Errors During Execution of Generated Code

Occasionally internal errors occur in the generated code. This happens when, for instance,
an array index in an operation is out of bounds and the MathCode array library is used with
array-bounds checking turned on.

138
In the stand-alone mode the application issues the message to the “standard error”
output unit (i.e. shown in the terminal window, like xterm in Unix or Command Prompt
window in Windows) including the line number (in the MathCode library source code)
where the error occurs.

In MathLink mode the "LinkConnect ... is dead" message appears.
In the Unix version (both stand-alone and MathLink versions) the application also

dumps core where the call stack can be analyzed by running gdb, dbx or any other
appropriate debugger.

In the Unix version (MathLink mode) a debugging tool (for example, gdb) can also be
attached to the running process after it has been installed by InstallCode. By this means
the code can be debugged in its dynamic behavior (note that this may require considerable
computer memory and processor time resources).

In the Windows version (MathLink mode), if the application is compiled with /Zi /
DEBUG flags

MakeBinary[CompilerOptions->"/Zi",LinkerOptions->"/DEBUG"]
It is possible to use the Tools/Debug Process option in Microsoft Visual Studio

environment. After the process is installed by InstallCode[], it can be debugged. In
Globaltm.c file it is convenient to set up the break within _MLDoCallPacket() function
and then follow C++ interface functions and your generated Fortran90 function step by step.

If the answer is never returned to Mathematica from a MathLink-mode call, you may
suspect an infinite loop in your generated code. If disk access is heavy, you may suspect
infinite recursive calls in your generated code.

When modifying and searching for the cause of an error in the generated code it is
typically more convenient to use stand-alone mode. Debugging under Unix is generally
easier. You should also consider command line compilation under Windows and Unix as
described in Section 7.9 on page 126.

10.3 Appendix

Appendix A 139
Appendix A The Compilable
Mathematica Subset

This chapter of MathCode User Guide describes the MathCode F90 release 1.2, September
2007 .

Note that the Compilable Subset varies from one release to another. Please read the Release
Notes attached to your MathCode installation for the most actual information

The MathCode system provides facilities to translate a subset of the Mathematica language
to compiled programs in strongly typed languages such as C++ or Fortran90. This subset
includes most elementary functions and operators that compute numeric values, but ex-
cludes symbolic and computer algebra-related functions that compute symbolic expressions.

However, it is possible to evaluate a symbolic expression (which may contain operations
such as simplification, symbolic differentiation, substitution etc.) and generate executable
numeric code from the symbolic expression resulting from this evaluation, provided that the
resulting expression(s) only contain operators and functions in the compilable Mathematica
subset described here.

The arithmetic model used in the compilable Mathematica subset is specified by the
IEEE Standard for Binary Floating Point Arithmetic, IEEE Standard 754. Operations on
complex numbers are currently not supported, but are planned in the near future.

A.1 Operations not in the Compilable Subset
The following is a short list of those Mathematica operations and functions not in the com-
pilable subset. Since the primary reason to generate compiled code is to get high perfor-
mance of numeric computing code, the operations in the compilable subset are oriented to-
wards efficient computing on numbers and arrays.

• Pattern matching is not supported, except for the simple case of function argument
patterns like arg1_Integer or arg2_Real, which are handled by the static type

140 Appendix A
system of the target language. However, overloading of functions is not supported by
the current version of the code generator, e.g., there may not be two functions with the
same name and arguments, one having Integer typed arguments and the other having
Real typed arguments.

• When a function is declared, its arguments must be specified as single-variable names,
separated with commas. As an example, node patterns like Name[a_,b_] below are not
permitted.

 foo [Real[2] a_, Real c_]->Real[2] := ... correct
 fie [Real[2] Name[a_,b_], Real c_]->Real[2]:= ... incorrect

• Arbitrary precision numbers and arithmetic are not supported. Numbers and arithmetic
operations are converted to either IEEE double precision floating-point arithmetic or 32-
bit (or better) integer arithmetic.

• Symbolic operations that give symbolic expressions as results are not included.
However, such operations can be compiled if they are expanded to expressions in the
compilable subset before code generation. Such expansion can handle many common
cases of symbolic operations.

• Negative array indexing, relative to the end of arrays, is not in the compilable subset,
String operations are not included. Input/Output operations are not included, apart from
a simple Print operation.

• Certain list (i.e. array) operations, specifically those that change the size of arrays or are
very inefficient, are not included in the set of functions mentioned in this appendix. Such
functions can be added by the user e.g. in the system module.

• The Return[] function is not included. Therefore loop constructs like For, While
cannot be used as expressions returning values.

• Some procedural style statements cannot be used within a CompoundExpression used
in value context within arithmetic expressions. For instance,
a=a+(While[i<10,i=i+1];5) cannot be translated.
 The expression a=a+(c=3;5), however, can be translated to C++. More details on
nested constructs are given below.

A.2 Predefined Functions and Operators
Expression operators listed in this section are predefined by the code generator and will be
translated correctly from Mathematica into the target language (e.g. C++ or Fortran90) with-
out any additional type declarations.

Almost all operators belong to the compilable expression subset, e.g., all value-returning

Appendix A 141
operators and predefined or user-defined functions without side effects (i.e. functions that do
not change global variables or perform input/output).

The reason for imposing the condition of calls to side-effect free functions is that
expressions can be re-ordered and common subexpressions removed in the generated code,
in order to make execution more efficient. Another order in assigning and referencing global
variables or performing input/output usually results in different, often unintended, program
behavior. However, some restricted cases of side-effects can be re-ordered without changing
the meaning of the program. One such case is when the elements of an array are assigned
once, independently of each other, and are not used in the same expression. Such restricted
side-effects are allowed for functions in the compilable expression subset. The code
generator does not check the condition of side-effect freeness—this is the user’s
responsibility.

All operators and functions in the compilable expression subset also belong to the
compilable subset, which contains control expressions (If, While, For, etc.), assignment
statements and functions with side effects. All real and integer constants naturally belong to
the compilable expression subset, except for the special case of arbitrary-precision values.
Some operators and functions can be applied to arrays or return arrays as values.

The current version of the compilable subset is oriented toward operations on real
numbers and integers, and arrays containing such numbers. The basic mathematical
functions usually found in C/C++ or Fortran are provided. In Mathematica there are also a
number of special mathematical functions such as BesselJ[], Gamma[], etc. If the user
has access to an implementation of such a function in C/C++ or Fortran, or a linkable object
code library containing this function, it can be declared as an external function and thus
automatically included in the compilable subset. Since efficient computation based on
mathematical models has been the main application of MathCode so far, the compilable
Mathematica subset does not include string operations, file input, formatted file output and
certain mapping and list operations.

A.2.1 Statements and Value Expressions

In standard Mathematica, all predefined and user-defined functions can appear as an argu-
ment of another function. Accuracy of such constructs is tested during code interpretation.

In procedural languages, such as C++ and Fortran, procedural statements cannot be used
within expressions. Also, the type of allowed expressions is restricted.

In order to compile Mathematica code to procedural language, some restrictions in using
statements and expressions are introduced.

In the descriptions below “stmt” means that corresponding Mathematica expressions are
used as statements. In the compiled subset they do not return values, their returned values
cannot be used, and they cannot be applied where values are expected. In the compiled set
there is no Null value.

142 Appendix A
In descriptions below “expr” means that corresponding Mathematica expressions are
used as values (l-value or r-value). These expressions must return some value when
evaluated. This value cannot be Null. The word “exprs” means one or more expressions
separated by a comma.

Some Mathematica constructs - Set, If, Which, CompoundExpression - can
appear both as statements and as values. Some specific restrictions on their use are described
below.

A.2.2 Function Call
Spec syntax Operator Arg type(s) Result type(s)

funcname[exprs]

All user-defined functions which have been type declared according to the typing rules for
typed Mathematica belong to the compilable subset. Compilable subset functions may only
contain operations that belong to the compilable subset, or may contain non-subset opera-
tions inside bodies of functions compiled with the EvaluateFunction option, which will
expand into compilable subset operations.

Functions with multiple return arguments can be compiled if they are type declared.
Such a function can only be used on the right-hand side of an assignment statement in which
the left-hand side has to be a list of variables. Thus, a call that returns multiple values can
look like this:

{a, b, c} = F[x+y, 3.4];

Calls to functions with no return arguments and functions with more than one return argu-
ments are to be considered statements (stmt).

Calls to functions returning one argument are considered to be expressions (expr).

A.2.3 Function Definition

A function returning values can be defined as follows:

Appendix A 143
function_name[arg_type1 arg1, ..., arg_typen argn]->result_types :=
 expr

function_name [arg_type1 arg1, ..., arg_typen argn]->
 result_types := Module[variables, expr]

function_name [arg_type1 arg1, ..., arg_typen argn]->
 result_types := Module[variables, stmt1;stmt2;...;expr]

A function that does not return values can be defined as follows:

function_name[arg_type1 arg1, ..., arg_typen argn]->Null := stmt

function_name[arg_type1 arg1, ..., arg_typen argn]->Null :=
 Module[variables, stmt;]

function_name[arg_type1 arg1, ..., arg_typen argn]->Null :=
 Module[variables, stmt1; stmt2;...;stmtn;]

Block or With can be used instead of Module.

A.2.4 Scope Constructs
Spec syntax Operator Arg type(s) Result type(s)

Module[variables,body] special none/(fnbody)
Block[variables, body] special none/(fnbody)
With[variables,body] special none/(fnbody)

A value can be returned from one of the above scope constructs when it occurs as a function
body or when it is used in a value context within an expression. The body is restricted as
follows:
• If a function does not return any value, the body is a statement. If it is a

CompoundExpression statement, then all (possibly nested) elements in
CompoundExpression must be statements.

In the following example two nesting levels of CompoundExpression are
demonstrated:

 foo[Real a_]->Null := Module[{ Real t},
 (t=a+1;t=t+1);(t=t+2;t=t+3)]

• If a function returns one or more values, the body is an expression. If it is a
CompoundExpression construct, then the last (possibly nested) element in the
CompoundExpression must be an expression. All other components must be

144 Appendix A
statements.
In the following example two nesting levels of CompoundExpression are

demonstrated; note that t+4 is an expression.

 foo[Real a_]->Real := Module[{ Real t},
 (t=a+1;t=t+1);(t=t+2;t=t+3;t+4)]

A.2.5 Control Statements

The control statements can appear wherever a statement is allowed, in which case they do
not return any value.
Spec syntax Operator Arg type(s) Result type(s)
s1; s2;... CompoundExpression [stmts] statements none

For [start-stmt,
 boolean-test-expr,
 incr-stmt, body-stmt] special none
While [boolean-test-expr,
 body-stmt] special none
If [boolean-test-expr, true-stmt,
 false-stmt] special none
Which [boolean-test-expr1, stmt1
 boolean-test-expr2, stmt2,...] special none
Break [] - none
Do [expr, iterators] special none

The CompoundExpression (a sequence of expressions separated by semicolons) Which
and If can also appear as an arithmetic expression. See “Arithmetic expression” for details.

A.2.6 Mapping Operations

Map expressions can be compiled in the following cases:

var=Map[f,expr]
var=Map[f,expr,{n}]

The result must be directly assigned to a variable as shown. The function f can be:

• A function symbol of the compilable subset
• An anonymous function, also called pure function in Mathematica
• A user defined typed function for which code has been generated

Appendix A 145
n must be an integer constant. The var=Map[...] statement will be converted to a corre-
sponding assignment statement with a call to Table on the right-hand side.

A.2.7 Iterator Expressions

Computing operations in Mathematica such as Do, Sum, Product and Table use iterators.
Additionally there are a number of plotting functions such as Plot, ContourPlot, Den-
sityPlot, Plot3D and ParametricPlot, which also use iterators but with some limita-
tions in form and usually constructing sets of real values for the purpose of plotting. These
plotting functions are not part of the compilable subset.

An iterator can take on one of the following forms:
Form Explanation
{imax} iterate imax times
{i,imax} i goes from 1 to imax in steps of 1
{i,imin,imax} i goes from imin to imax in steps of 1
{i,imin,imax,di} i goes from imin to imax in steps of di
{i,imin,imax},{j,jmin,jmax} Two iterators: i controls the outer iteration loop,

 j controls the inner loop

Iterators in Mathematica can use either integer or real values for the iteration variables in
the iteration. The compilable subset of iteration functions is limited to integer iteration vari-
ables. The iteration variables in Mathematica are declared in a local scope consisting of the
body (the expr below) of the iteration function. Thus, translated code in Fortran90 needs to
declare those iteration variables in a way that does not clash with other local variables. Typ-
ically, these iteration constructs will be translated to (nested) for loops in the target lan-
guage.

Iteration functions in Mathematica may or may not return a value. The functions Sum,
Product, Table and Range always return a value from the iteration. Loop-terminating
constructs like Return, Break, Continue, or Throw can be used inside Do. However, Do
in Mathematica does not return a value except in the case of an explicit Return of a value.

The compilable subset currently does not support return of a value from a Do loop.
Another constraint of the compilable subset is that the constructs Sum, Product and Table
may currently only occur on the right-hand side of an assignment statement. Concerning
Table, see also Section A.2.12.

Spec syntax Operator Arg type(s) Result type(s)
Do[expr,iter1,iter2,...] special none
Sum[expr,iter1,iter2,...] Real,Integer Real, Integer
Product[expr,iter1,iter2,...] Real,Integer Real, Integer

146 Appendix A
A.2.8 Input/Output Operations

Operator Arg type(s) Result type(s)
Print[exprs] Real, Integer, Array, String none

(Export and Import are new in MathCode 1.4)

When Print[] is performed the output is placed on the standard output stream of the external
process where the generated code is executing. For some operating environments (e.g. with
MathLink) this stream is not available.

A.2.9 Standard Arithmetic and Logic Expressions

Table[expr,iter1,iter2,...] Real,Integer Array

Spec syntax Operator Arg type(s) Result type(s)
== Equal[e1,e2] Real,Integer,Array Boolean
!= Unequal[e1,e2] Real,Integer,Array Boolean
> Greater[e1,e2] Real, Integer Boolean
< Less[e1,e2] Real, Integer Boolean
>= GreaterEqual[e1,e2] Real, Integer Boolean
<= LessEqual[e1,e2] Real, Integer Boolean

Inequality[exprs...] special Boolean
! Not[e] Boolean Boolean
|| Or[exprs...] Boolean Boolean
&& And[exprs...] Boolean Boolean
+ Plus[exprs...] Real,Integer,Array Real,Integer,Array
- Subtract[e1,e2] Real,Integer,Array Real,Integer,Array
- Minus[exprs...] Real,Integer,Array Real,Integer,Array
* Times[e1,e2] Real,Integer,Array Real,Integer,Array
/ Divide[e1,e2] Real,Integer,Array Real, Array

Mod[e1,e2] Real,Integer,Array Real, Array
Rational[e1,e2] Real,Integer Real

Spec syntax Operator Arg type(s) Result type(s)

Appendix A 147
^ Power[e1,e2] Real,Integer,Array Real,Integer,Array
Abs[e] Real,Integer,Array Real,Integer,Array
If[boolean-test-
expr,true-expr,
false-expr]

1st arg Boolean;
Real,Integer,Array

Real,Integer,Array

Sign[e] Real,Integer Integer
Floor[e] Real,Array Integer
Ceiling[e] Real,Array Integer
Rounde[e] Real,Array Integer
Sqrt[e] Real,Integer,Array Real, Array
Exp[e] Real,Integer,Array Real, Array
Log[e] Real,Integer,Array Real, Array
Sin[e] Real,Integer,Array Real, Array
Cos[e] Real,Integer,Array Real, Array
Tan[e] Real,Integer,Array Real, Array
Cot[e] Real,Integer,Array Real, Array
Sec[e] Real,Integer,Array Real, Array
Csc[e] Real,Integer,Array Real, Array
ArcSin[e] Real,Integer,Array Real, Array
ArcCos[e] Real,Integer,Array Real, Array
ArcTan[e] Real,Integer,Array Real, Array
ArcTan[e1,e2] Real,Integer,Array Real, Array
ArcSinh[e] Real,Integer,Array Real, Array
ArcCosh[e] Real,Integer,Array Real, Array
ArcTanh[e] Real,Integer,Array Real, Array
ArcCoth[e] Real,Integer,Array Real, Array
IntegerPart[e] Real,Integer,Array Integer, Array
FractionalPart[e] Real,Integer,Array Real,Integer,Array
Quotient[e1,e2] Real,Integer,Array Integer,Array
Max[m,n] Real,Integer Real,Integer
Min[m,n] Real,Integer Real,Integer
Max[e] Array of Real Real

Spec syntax Operator Arg type(s) Result type(s)

148 Appendix A
For functions with two arguments, the following rule applies: one argument can be Array
and another argument can be either scalar (of the same type as the base type of the array) or
Array of the same dimension. This does not apply to == and !=.

Those functions that return an integer value converted from real: Sign, Floor,
Ceiling and Round, give an undefined value or an exception (depending on the
underlying target language, e.g. Fortran90) when trying to fit too large a number into an
integer.

The following functions are implemented according to Mathematica semantics1:

• IntegerPart returns (int)x for Reals

• FractionalPart returns x-IntegerPart(x)
• Quotient[m,n] returns Floor(m/n) for Reals. Mod[m,n] returns m%n if m

and n have the same sign and m%n+n if they have opposite signs. If m or n is a Real then
m-n*floor(m/n) is returned.

• The Rational function is part of the compilable subset. It is treated exactly like
Divide and converted to Divide during code generation.

• The special purpose Cross function computes the cross product of n-1 vectors of length
n and returns a vector of length n. For example, Cross[{2,3,4},{5,6,7}] returns
the vector {-3,6,-3} which is orthogonal to the two argument vectors. The function
Cross is implemented for n= 3, 4, 5 according to the generalized Mathematica
definition.

The CompoundExpression construct when used as a value within another statement

Max[e] Array of Integer Integer
Min[e] Array of Real Real
Min[e] Array of Integer Integer
Outer[e1,e2] 1D-Array,1D-Array Array
Cross[e1,e2,...,en] Arrays Array
Transpose[e] 2D-Array 2D-Array

e1 . e2 ... Dot[e1,e2,...] Array Real,Integer,Array
CompoundExpres-
sion[stmt1, ...,stmtn
,expr]

statements expr

1. Read Release Notes for more information

Spec syntax Operator Arg type(s) Result type(s)

Appendix A 149
or expression (but not as a function definition) has the following limitation: the statements
(stmt1,..., stmtn) allowed within CompoundExpression are assignments (Set), Print or
Put only.1 Assignment to list cannot be used there. For instance:

 a=b+(While[i<10,i=i+1] ; c); (* not allowed *)

 a=Foo[{d,f}={3,5} ; c]; (* not allowed *)

 a=b+(Print[x];c); (* allowed *)

 foo[Real a_]->Real=(i=i-1;(While[i<10,i=i+1] ; c)) // allowed

A.2.10 Named Constants
Spec syntax Operator Arg type(s) Result type(s)

True - Boolean
False - Boolean
E - Real
Pi - Real

Variables of type Boolean are not supported in the compilable subset. If boolean values are
assigned to integer variables, False becomes 0, True becomes non-zero. Named constants
are expressions (expr).

A.2.11 Assignment Expressions
Spec syntax Operator Arg type(s) Result type(s)
var := e SetDelayed[var,e] all types value
var = expr Set[var,expr] all types value
{vars} = funcall Set[List[vars],funcall] - none
{vars} = expr Set[List[vars],expr] - none

The supported main assignment functions, Set and SetDelayed, have return types. There-
fore these can be used both as statements and as expressions.

The arguments (left- and right-hand side of the assignment) must be of compatible types.
Left- and right-hand side arguments are compatible if they can be made into the same

type by performing standard type promotion (e.g. promoting integer to real, or a scalar or
lower-dimensional array to a higher-dimensional array), provided that this promotion does
not change the type of the left-hand side. If it does, then the assignment is illegal. This means

1. Read Release Notes for more information

150 Appendix A
that an expression of a real type cannot be assigned to a variable of integer type without
using explicit conversion of the right-hand side (e.g. using Floor[]).

In the case of simultaneous assignment to a list of variables {vars}, funcall must be a
call to a function returning a list of the same length as the list on the left-hand side of the
assignment. Also, the vars list on the left-hand side may only contain variables.

A.2.12 Array Data Constructors
Spec syntax Operator Arg type(s) Result type(s)

Array[exprfunc,{dim1,dim2,...}] exprfunc constant Array
Table[expr,{dim1},{dim2},...] Array
Table[expr,{i,imin,imax,istep},{j,jmin,jmax,jstep},...] Array
IdentityMatrix[n] Integer Array (2D)
DiagonalMatrix[vec] Array (1D) Array (2D)
Range[n] Real or Integer Array (1D)
Range[start, end] Real or Integer Array (1D)
Range[start, end, step] Real or Integer Array (1D)

See also section A.2.7 concerning iterator expressions. The following limitations currently
apply to compilation of Array, Table, IdentityMatrix and DiagonalMatrix calls:
the exprfunc used by Array may only be a constant function; local iteration variables used
in iterators to Table are automatically created but are always of type Integer; calls to
Array, Table, IdentityMatrix and DiagonalMatrix may only occur on the right-
hand side of an assignment statement, for example:

arrvariable = Table[3.1+i+j, {i,5}, {j,1,10,2}]

A.2.13 Array Data Manipulation

A.2.14 Statisics and sorting functions
The command Median[] does not work with Complex numbers in Mathematica.

A.2.15 Array Dimension Functions
Spec syntax Operator Arg type(s) Result type(s)

Dimensions[arr][[i]] Array Integer

Appendix A 151
Dimensions[arr] Array Array of Integers
Length[arr] Array Integer

A.2.16 Array Indexing
Spec syntax Operator Arg type(s) Result type(s)
arr[[ind]] Part[arr,ind] Integer Integer,Real,Array

Extract[a1,a2] Array of Integer constants Array of Element Type

Extract[a,i] takes an array of rank 1,2,3, or 4 as the first argument and a vector of inte-
gers as the second argument. It returns the base element of the first array. If the size of the
vector i is not equal to the rank of a then a runtime error may occur.

The Part construct can be used in both the left and right parts of an assignment. The
number of indices should be less than or equal to the rank of the array. For instance, these
operations are allowed:

Declare[
Real[3,3,3,3] a4;
Real[3,3,3] a3;
Real[3,3] a2;
Real[3] a1;
Real x;
...

]

a3[1]=a2; a3[2,1]=a1; a3[3,1,2]=5.5;
a2[1]=a1; a2[2,2]=7.7;
a4[2,3,1,2] = 6.6;

x=Extract[a4,{2,3,1,2}]

a4[1,2,3]=a1;a4[1,2]=a2;a4[1]=a3;

This operation is not permitted:

a1=Extract[a4,{2,3,1}] (* Wrong rank. May cause run time error *)

A.2.17 Array Section Operations
Spec syntax Operator Arg type(s) Result type(s)
arr[[_]] Part[arr,...] special Array
arr[[n1|_]] Part[arr,...] special Array
arr[[n1|n2]] Part[arr,...] special Array

152 Appendix A
These are extensions to standard Mathematica. See Chapter 3 for more information. These
operations are currently supported for up to four dimensions by the code generator and for
arbitrary dimensions within Mathematica and can be used on both the left- and right-hand
sides of assignment statements.

A.2.18 Other Expressions
Spec syntax Operator Arg type(s) Result type(s)
{e1, e2,...} List[expressions] all types Array

Apply[f, args]

List

List is partially implemented when appearing within expressions, for instance when used as
an actual parameter to a function. The arguments of List can be:

• Real expressions (creates an Array of Real)
• Integer expressions (creates an Array of Integer)
• Arrays of Real (creates a 2-, 3-, 4-dimensional Array of Real). Can be nested.
• Arrays of Integer (creates a 2-, 3-, 4-dimensional Array of Integer). Can be nested.

List is also implemented when it appears on the left-hand side of an assignment. In this case
Part is applied to the right-hand side, and all types should match1:

{a,b,{c,d}}=x (* is the same as
 a=x[[1]];b=x[[2]];c=x[[3,1]];d=x[[3,2]]; *)

A runtime error may occur if a matrix appears to be non-rectangular.
These special cases are implemented:

variable={expr1,...,exprn}

{var1,...,varn}=expression

{var1,...,varn}={expr1,...,exprn}

Apply

The following cases of Apply are implemented:

1. Read Release Notes for more information

10.3 Appendix 153
• Plus, Power and Times applied to an expression with assignment to a typed variable:

 var=Apply[Plus,expression] var = Plus @@ expression
 var=Apply[Power,expression] var = Power @@ expression
 var=Apply[Times,expression] var = Times @@ expression

• Apply of typed functions, for example

 var=Apply[function,expression] function @@ expression

The number of arguments to the function must match the length of the expression.

• Apply of anonymous (pure) functions, for example

 var=Apply[Sin[#1+#2]&,expression] Sin[#1+#2]& @@ expression

The code Apply[foo,expr], equivalent to foo @@ expr, will be converted to
foo[expr[[1]],expr[[2]],...]. Therefore the behavior will be different from
that of Mathematica (and hence probably unexpected) if the number of parameters is not
the same as the length of the expression expr.

It is the user’s responsibility to ensure that the number of arguments to the pure
function is the same as the length of the expression. The number of arguments is taken
as the maximum slot number (for Function[body]) or the length of the variable list
(for Function[{vars...}, body]).

The expression given to Apply may be computed many times which may be a
performance issue. If the expression is large, it is better to assign the expression to a
temporary variable before using Apply.

No level specification is supported for Apply.

A.2.19 Operators Which May Have Side-effects
Spec syntax Operator Arg type(s) Result type(s)
var := e SetDelayed[var,e] all types none
var = expr Set[var,expr] all types none
{vars}=funcall Set[List[vars],funcall] special none

For[start,test,incr,body] special none
While[test,body] special none
Do[expr,{iter1...},{iter2...}..] special none
If[test,true-expr,false-expr] special none/expr
If[test,true-expr] special none/expr
Which[test1,val1,test2,val2,...] special none
Break[] - none

e1; e2; .. CompoundExpression[exprs] special type of last expression

154 10.3 Appendix
Module[variables,body] special none/function value
Block[variables, body] special none/function value
With[variables,body] special none/function value

A.3 Predefined Types
As already mentioned, there are a number of predefined basic types included in the com-
pilable subset of Mathematica. There is also a set of predefined types, primarily array types,
which are included for convenience.

A.3.1 Basic Types
Name Comment
Real IEEE double precision floating point
Integer 32 bit integer
String 8-bit byte string. May contain ’\0’ characters.
Null Absence of type

A.3.2 Array Type Constructors
Name Comment
eltype[dim1,dim2,...] Here eltype is the array type constructor.
Maximal rank of arrays is 4 in the current implementation. The base type should be Real or
Integer.

A.4 Predefined Constants
The following constants are available within Mathematica, and are predefined to the follow-
ing values with 18 decimal digits within generated C++ or Fortran90 code. A standard dou-
ble precision floating-point value can hold slightly less than 16 digits of precision.

Name Value
Pi 3.14159265358979324
E 2.718 281 828 46

 155
Symbols
(Slot for pure function) 153
$MathCodeMakeFile 117
$MCRoot 53
& (pure function) 153
. 148
: 68
= (Set) 149, 153
> 146
@@ (Apply) 153
 151
_ 68, 151
{ } 152
| 68, 151

A
Abs 147
ActivateCode 123, 124
allocation

without initialization 99
Apply 152
array 105, 150

allocation 97
initialization 97
runtime sized 99
slice operations 67
type constructor 88

array indices
lower bounds 103
negative indices 105
upper bounds 104

assignment expressions 149

B
basic types 85

Block 143, 154
Break 144, 153
BuildCode 122

C
CCOPT 117
Ceiling 148
CleanMathCodeFiles 66
code generation

preceded by symbolic evaluation
39

standard 38
column matrix 71
column vectors 70
Command Shell 126
compilable expression subset 140
compilable subset 139
CompilePackage 112
Compiler 116
CompilerOptions 117
compile-time constants 87
CompoundExpression 144, 148, 153
Constant 87
Constant Declarations 87
constants

compile-time 87
named 87, 149

constructor
array types 88
data 89
type 88

control statements 144

D
data constructor 89

156
DeactivateCode 123, 124
DebugFlag 116
declaration of several variables 86
declarations 79

constant 87
functions 81, 90
multiple variables 86
separate 86, 92
variable 86

Declare 23, 86, 87, 90, 92
declared separately 86
Depth 107
DiagonalMatrix 100, 106, 150
dimension size placeholders 101
Dimensions 150, 151
DisabledMathLinkFunctions 114
Divide 146, 148
Do 144, 145, 153
Dot 148
DownValues 123, 124
dual type system 22

E
E 149
Equal 146
error categories 134
errors

categories 134
semantic 136
syntax 135

EvaluateFunctions 114
execution parameters 97
expressions

assignment 149
ExternalCall 124
ExternalDownValues 123, 124

Extract 151

F
False 149
Floor 148
For 144, 153
FractionalPart 148
function

declaration 81
functions 90

multiple return values 91
no input parameters 90
no return value 91
predefined 140

G
GaussSolveForLoops 56
GaussSolveMatlab 54
Global 20, 112
global variables 96
Greater 146
GreaterEqual 146

I
IdentityMatrix 100, 106, 150
IEEE Standard 754 139
If 144, 147, 153
index range notation 68
Inequality 146
Input/Output 140
Install 124
InstallCode 51, 123
Integer 154
IntegerPart 148

 157
integration 122
compiled code 111
external code 111

intermediate form 110
iterator expressions 145

L
Language 116
Length 106, 151
Less 146
linker 126
LinkerOptions 117
LINKOPT 117
List 152
list structures 88
Listable 98
lists as arrays 88
local variables 97

M
MacroRules 115
MainFileAndFunction 115
MakeBinaries 115
MakeBinary 50, 121
Map 144
MathCode 17
MathCodeConfig.m 116
MathLink 18, 20, 110, 114, 121, 122
MatrixQ 107
Max 147
Mod 148
Module 143, 154
mprep 110

N
Named 87
NeedsExternalLibrary 115
NeedsExternalObjectModule 115
Null 85, 154

O
operators

predefined 140
OuterProduct 148
overloading 140

P
packages

system 125
Part 67, 151
partial evaluation 120
pattern matching 139
patterns 81
performance

SinSurface 52
Pi 149
Plus 146
Print 146
Product 145
Protected 87

Q
Quotient 147, 148

R
Range 106, 150

158
Rational 146, 148
Real 85, 154
Return 140
Round 148
row matrix 70
row vectors 70

S
scope constructs 143
semantic errors 136
separately 92
Set 149, 153
SetCompilationOptions 113
SetDelayed 149, 153
Sign 147, 148
single-assignment 103
SinSurface 41
SourceDownValues 123, 124
StandAloneExecutable 122, 126
static typing 79
String 154
stub function 123
subexpression elimination 119
Sum 145
syntax errors 135
system package 125

T
Table 106, 150
target code type 110
TensorRank 106
True 149
type 22

basic 85
constructor 88

static 79

U
UnCompiledFunctions 114
UninstallCode 66, 124

V
variables

declaration 86
global 96
local 97

Vector 67
VectorQ 107
Vectors 70
vectors

column 70
one dimensional 70
row 70

W
Which 144, 153
While 144, 153
With 143, 154

 159

160

 161

162

 163

164

	MathCode F90
	Preface
	How to Read this Book
	Chapter 1 Quick Tour of MathCode
	1.1 Introduction
	1.2 Short Example
	1.3 Using the MathCode System
	1.3.1 Code Generating Phase
	1.3.2 Building Phase
	1.3.3 Executing Phase

	1.4 MathCode Type System
	1.4.1 Dual Type System
	1.4.2 Basic Types
	1.4.3 Declarations
	1.4.4 Function Signatures
	1.4.5 Arrays and Lists
	Basic Array Static Type Definition
	Examples
	Unspecified Dimension Sizes
	Named Dimension Placeholders
	Array Sizes in Function Signatures
	Dimension Sizes of Array Parameters
	Initialization of Arrays in Declarations

	1.5 Compilation to Fortran90 code
	1.5.1 Calling the Code Generator
	CompilePackage
	SetCompilationOptions
	Compiling Different Items
	Variable Declarations
	Functions
	Functions With Symbolic Operations
	Main Program Function

	1.5.2 Building
	MakeBinary
	BuildCode

	1.5.3 Installing
	InstallCode

	1.5.4 Executing
	1.5.5 Uninstalling

	1.6 Matrix Operations
	1.7 Implementing Missing Mathematica Functions
	1.7.1 An Example systemF90.nb Notebook
	Initialization Needed to use MathCode
	Package Header
	Public Exported Global Symbols
	End Public Section

	Private Implementation Section
	RotateRight
	End of Package

	Compiling
	Building
	Install and Test

	1.8 Interfacing With External Libraries
	1.9 MathCode Limitations

	Chapter 2 Getting Started by Examples
	2.1 Compilation and Code Generation
	2.2 Two Modes of Code Generation
	2.3 The SinSurface Application Example
	2.3.1 Introduction
	2.3.2 Initialization
	Check Current Directory

	2.3.3 Start of the SinSurface Package
	Exported Symbols
	Setting Compilation Options

	2.3.4 The Body of the SinSurface Package
	2.3.5 Functions and Declarations to be Translated to Fortran90
	Global Variables
	sin, cos
	arcTan
	sinFun2
	calcPlot
	End of SinSurface Package

	2.3.6 Execution
	Mathematica Evaluation
	Using Mathematica Standard Compile[]

	2.3.7 Using the MathCode Code Generator
	The Generated Fortran90 Code
	Compiling and Linking the Fortran90 Code
	Installing and Connecting to Mathematica
	Execution of generated Fortran90 Code

	2.3.8 Performance Comparison

	2.4 The Gauss Application Example
	2.4.1 The Gauss Package
	Initialization of the Package
	Start the Package
	Define Exported Symbols
	Define the Functions and Variables
	GaussSolveArrayslice
	GaussSolveForLoops
	The Compiled GaussSolveForLoops function, using Compile[]
	End of the Gauss Package

	2.4.2 Executing the Interpreted Version in Mathematica
	Run GaussSolveArrayslice
	Run the For-loop Version

	2.4.3 Generation of Fortran90 code
	The Produced Fortran90 Code for Gauss

	2.4.4 Building the Executable
	2.4.5 Installing Compiled Code
	2.4.6 Prepare for Execution
	2.4.7 External Execution
	External Execution of Array Slice Version
	External Array Slice Version, MathLink in each Iteration
	External Execution of For-Loop Version
	External For-loop Version, MathLink in each Iteration
	Internal Execution of LinearSolve as a Comparison
	Internal execution of Compiled version

	2.4.8 Cleanup

	Chapter 3 Matrix and Vector Operations
	3.1 Examples of Array Operations
	3.2 Index Range Notation
	3.2.1 Omitting End of Index Range
	3.2.2 Omitting Start of Index Range
	3.2.3 Omitting Both Start and End of a Range

	3.3 Vectors Versus Rows and Columns
	3.3.1 One-dimensional Vectors
	3.3.2 Row Vectors
	3.3.3 Column Vectors

	3.4 Extracting or Assigning Vectors From Vectors
	3.5 Extracting Vectors From Matrices
	3.5.1 Extracting One-dimensional Vectors
	3.5.2 Extracting Vectors as Submatrices of Shape 1¥n or n¥1

	3.6 Assigning Vectors to Rows or Columns of Matrices
	3.7 Extracting and Assigning Arbitrary Submatrices
	3.8 Promotion of Scalars to Vectors or Matrices
	3.9 An Example Matrix Function
	3.10 Current Limitations

	Chapter 4 Rationale for Type Declarations in Mathematica
	4.1 Why Type Declarations?
	4.2 Types for Code Generation
	4.3 The Need for Type Checking
	4.4 Types for Object Oriented Simulation Modeling
	4.5 Introducing Declarations in Mathematica
	4.6 Declarations in Mathematica Packages
	4.7 Basic Types
	4.8 Dual Type System
	4.9 Typed Function Declarations
	4.9.1 Type Arguments to the Mathematica Compile Function

	4.10 Typed Declarations

	Chapter 5 More on Typing and Declarations
	5.1 Basic Types
	5.2 Declarations
	5.2.1 Variable Declarations
	5.2.2 Constant Declarations

	5.3 Type Constructors and Data Constructors
	5.3.1 List Structures and Array Types
	5.3.2 Array Type Constructors
	5.3.3 Data Constructors

	5.4 Array Variable Declarations
	5.4.1 Declaring Multiple Array Variables

	5.5 Functions
	5.5.1 Functions with No Input Parameters
	5.5.2 Functions with Multiple Return Values
	5.5.3 Functions Returning Arrays
	5.5.4 Functions with No Return Value
	5.5.5 Functions with Local Variables
	5.5.6 Structure of a Small Example Package with Typed Functions

	Chapter 6 Data Allocation and Initialization
	6.1 When Should Allocation and Initialization be Performed?
	6.1.1 Initialization of Global Variables
	Local Variables

	6.1.2 Execution Parameters

	6.2 Array Allocation and Initialization
	6.2.1 Array Usage and Representation in Mathematica
	6.2.2 Array Initialization by Promoted Scalar Values
	Initialization of Runtime Sized Arrays
	Allocation Without Initialization
	General Initializers
	Unspecified Dimension Sizes

	6.2.3 Summary of Array Dimension Specification
	Array Dimensions for Function Parameters and Results
	Array Dimensions for Declared Variables

	6.3 Array Index Bounds
	6.3.1 Array Index Lower Bounds
	6.3.2 Dimension Sizes and Upper Index Bounds
	6.3.3 Declaring Local Arrays with Variable Dimension Sizes
	Negative Indices

	6.4 When x in a[[x]] is negative, a range check error will be triggered if range checking is turned on using SetCompilationOptions[CompilerOptions- >"/CB"]. If range check is turned off (default), the result is unpredictable. Array Constructor Functions
	6.4.1 Array Dimension Size Functions

	Chapter 7 Compilation and Code Generation
	7.1 Overall System Structure
	7.2 Compilation and Code Generation Aspects
	7.2.1 Target Code Type
	7.2.2 Evaluation of Symbolic Operations
	7.2.3 Integration

	7.3 Invoking the Code Generator
	7.3.1 CompilePackage[]-the Primary Code Generation Function
	CompilePackage[packagename]
	Different Items to be Compiled

	7.3.2 Optional Parameters to Control Code Generation
	SetCompilationOptions
	Priority of Parameter Settings
	Option EvaluateFunctions
	Option UnCompiledFunctions
	Option DisabledMathLinkFunctions
	Option MainFileAndFunction
	Option NeedsExternalLibrary
	Option NeedsExternalObjectModule
	Option MacroRules
	Option DebugFlag
	Option Language
	Option Compiler
	Option CompilerOptions
	Option LinkerOptions
	Option MathCodeMakeFile

	7.4 Standard Layout of a Package to be Compiled
	7.5 Code Generation of Symbolically Evaluated Expressions
	Common Subexpression Elimination
	A Short Example

	7.6 Building Executables
	7.6.1 MakeBinary["packagename"]
	Setting Compilation Options for the Fortran90 Compiler
	Controlling Type of Binary Executable

	7.6.2 BuildCode["packagename"]

	7.7 Integration
	7.7.1 Calling Compiled Generated Code via MathLink
	Code Storage Places

	7.7.2 Integration of External Libraries and Software Modules
	7.7.3 Callbacks to Mathematica

	7.8 Providing Missing Mathematica Functions
	7.8.1 The system Package

	7.9 Fortran90 Fortran Code Compilation from Command Shell
	7.9.1 Command Shell Compilation in Windows using make
	7.9.2 Command Shell Compilation in Windows using nmake
	7.9.3 Command Shell Compilation in UNIX

	Chapter 8 Interfacing to External Libraries
	Chapter 9 System and Installation Information
	9.1 Files in the MathCode Distribution
	9.2 System-specific installation information
	9.3 ReadMe Information and Release Notes

	Chapter 10 Trouble Shooting
	10.1 Code Generation Phases
	10.2 Error Categories
	10.2.1 Packaging Errors - Missing Functions
	10.2.2 Syntactic Errors
	10.2.3 Semantic Errors
	10.2.4 Errors During Fortran Compilation and Linking
	10.2.5 Internal Code Generator Errors
	10.2.6 Long Compilation Times
	10.2.7 Internal Errors During Execution of Generated Code

	10.3 Appendix
	Appendix A The Compilable Mathematica Subset
	A.1 Operations not in the Compilable Subset
	A.2 Predefined Functions and Operators
	A.2.1 Statements and Value Expressions
	A.2.2 Function Call
	A.2.3 Function Definition
	A.2.4 Scope Constructs
	A.2.5 Control Statements
	A.2.6 Mapping Operations
	A.2.7 Iterator Expressions
	A.2.8 Input/Output Operations
	A.2.9 Standard Arithmetic and Logic Expressions
	A.2.10 Named Constants
	A.2.11 Assignment Expressions
	A.2.12 Array Data Constructors
	A.2.13 Array Data Manipulation
	A.2.14 Statisics and sorting functions
	A.2.15 Array Dimension Functions
	A.2.16 Array Indexing
	A.2.17 Array Section Operations
	A.2.18 Other Expressions
	List
	Apply

	A.2.19 Operators Which May Have Side-effects

	A.3 Predefined Types
	A.3.1 Basic Types
	A.3.2 Array Type Constructors

	A.4 Predefined Constants

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

