
 MathCode Fortran90 installation
instructions for MacOSX machines and

license administration

Version 1.2.4,
April 6, 2011.
1

Chapter 1 Installation step by step

Please follow these steps for successful MathCode F90 installation.

1.1 Check your Mathematica, GCC version

Mathematica 6.0,7.0, 8.0 are supported only, for Intel processors only.
You need the GCC compiler which is included in free XCode tool (http://developer.ap-

ple.com/tools/download/).
The following MacOSX releases were tested:
Mac OS X version 10.4.* ("Tiger") with XCode 2.4.1,
Mac OS X version 10.5.* ("Leopard") with XCode 3.1.1,
Mac OS X version 10.6.* ("SnowLeopard") with XCode 3.2.1

MathCode relies on compatibility between GCC and G95 versions.
GCC versions between 3.3 and 4.4 were tested. If you have a different GCC version please
read the Section 2.1.

1.2 Choice of compilers
MathCode F90 for MacOSX requires the G95 compiler.

1.3 Install G95 properly before MathCode installation
MathCode F90 requires the G95 compiler. It is available from http://www.g95.org.

Download a stable version for "x86 OSX" platform.
G95 version 0.91 (March 2008) was tested. Later releases should work as well.
Choose a directory for installation. In order to make possible for other users to run g95

you should grant read permissions for this directory.
Unpack the downloaded tarball (e.g. g95-x86-osx.tgz) in a directory
of your choice:

 tar -zxvf g95-x86-osx.tgz

Create a symbolic link from a directory in your $PATH (e.g. ~/bin) to the executable

 ln -s $PWD/g95-install/bin/*g95* ~/bin/g95
2

You should now be able to run g95 and create executables.

As an alternative, in order to make possible for other users to run g95 you should use a
common directory which is present in everyone’s $PATH, and create a symbolic link with
name /usr/bin/g95 or /usr/local/bin/g95 :

sudo ln -s $PWD/g95-install/bin/*g95* /usr/bin/g95

In this case make sure that $PWD is readable for other users.

In MacOSX environment you start normaly Mathematica using an icon before any adjust-
ments to your PATH are applied. Therefore, for Mathematica the directory $HOME/bin
will not occur in the path (even if you tell that in your $HOME/.profile). The following
command creates a symbolic link such way that g95 is directly available from Mathematica
in /bin :

sudo ln -s $PWD/g95-install/bin/*g95* /usr/bin/g95

If you have no administrative rights you can adjust "g95" everywhere in the make-files
System/u95.unx and lib/sheep/u95.mak.

1.4 Installing Intel Fortran compiler before MathCode
installation

This section does not apply to MathCode for MacOSX

1.5 Determine your $MachineID
The $MachineID is needed for registration. It is the identity of the machine you want a

license for. To find out your $MachineID, evaluate the following in Mathematica:

$MachineID

1.6 Obtain license key for purchased license
You should register to get a key file that will enable you to use the software. If you pur-
chased the software you can register it online at the following URL:

http://www.mathcore.com/register.html

Please do not use this page for demo (trial) licenses, see Section 1.7!

When you start installation of MathCode you can click the button Register to register your
software.

Within two business days you should receive an e-mail with the key file attached. Save the
attachment to a file. Remember where you saved it; you will need to select this location dur-
ing MathCode C++ installation.
3

1.7 Obtaining license key for demo (trial) license
You apply for demo (trial) license using online demo request form at

http://www.mathcore.com/products/mathcode/
and click on Download Trial version

When you start installation of MathCode you should not click the Register button to register
your software.

Within two business days you should receive an e-mail with the key file attached. Save the
attachment to a file. Remember where you saved it; you will need to select this location dur-
ing MathCode C++ installation.

1.8 Previous MathCode installations
You can have ony one MathCode installation available in your UNIX account at a time. The
setup will disable any previous installation of MathCode C++ or MathCode F90. The current
installation is determined by settings in file (which is created during installation):

~/Library/Mathematica/Applications/MathCode.m

1.9 Different Mathematica installations
An installed MathCode can be used with only one Mathematica installation. If you

switch to a different Mathematica version you must re-install MathCode. Otherwise
difficult linking error messages will occur.

1.10 Check for the latest release
Since MathCode relies on many other software products that often change their versions and
properties please always download the latest version from the address you get from us to-
gether with your key file; currently it is

http://www.mathcore.com/products/mathcode/download/downloadframe.shtml

1.11 Decide whether you need personal installation or root
installation.

We recommend you to log in with your personal user name and install MathCode under your
own home directory. MathCode will be available for you only.

On MacOSX machines you should install MathCode under your own home directory.

1.12 Installation procedure
Go to the linux directory on the MathCode CD or obtain the latest release from www.math-
core.com.

You obtain file mathcode-macosx-version.tar
Use command tar -xvf mathcode-macosx-version.tar to unpack this archive.
Run the file install.system, either by ./install.system (preferred) or sh
4

install.system (if the file is not flagged as executable on the CD) and follow the on-
screen instructions.

The installation script compiles all necessary MathCode runtime libraries, therefore you
do not need to care about libc library versions (as it was in MathCode C++ for Linux 1.2.2
and earlier).

If you have any special settings (PATH, GCC flags etc.) when you compile the runtime
library, these settings should be preserved when you use MathCode C++ for compilation.

Please run the test Demos/Verify/testlinux.m after installation.
The message indirect jmp without '*' is an internal to g95 on MacOSX and can be

ignored.

1.13 Parallel installations
You can install several installations of MathCode, but only one of them (the latest one)

will be used within Mathematica.

1.14 Uninstall
At the end of installation the script tells the name of a file (uninstall-system.sh) which

contains commands for uninstall.
5

Chapter 2 Advanced adjustments

2.1 Using different GCC version
If you have a different and unexpected GCC release, then installation may stop. Please
install another gcc toolkit and place its directory first in the path, so that shell commands
"gcc" and "g++" invoke the tools of different version.
Execute the command Run["echo $PATH"] from Mathematica to see the actual path.

In addition to this you will need to set up a symbolic link so that commands invoked from
within Mathematica sessions search for correct g++ binary of correct gcc version. When
shell commands are executed from within Mathematica, a modified path is used. Execute
the command Run["echo $PATH"] from Mathematica to see the actual path.
Typical commands to adjust the g++ in use can be:
su
cd /usr/local/Wolfram/Mathematica/6.0/Executables
ln -s /usr/local/gcc/3.3.4/bin/g++ .
ln -s /usr/local/gcc/3.3.4/bin/gcc .

2.2 Using a different Fortran90 compiler
MathCore Engineering AB provides you with scripts needed for different Fortran90 com-
piler as a consultancy service.

Steps needed for attaching a different Fortran90 compiler on any UNIX-like operating
system are:

1. Study MathCodeConfig.m, it refers to u95.unx and unix.tmpl.

2. Study how unix.tmpl makes Global.cmd.

3. Study how Global.cmd calls System/u95.unx.

4. Study how System/u95.unx calls lib/sheep/u95.mak.

5. Change *.f90 and *.c files in lib/sheep so that they can be compiled by your Fortran90
and C++ compiler.

6. Change lib/sheep/u95.mak so that sheep.lib can be created.

7. Investigate whether your Fortran90 and C++ compiler can compile files like Global.*

8. Change System/u95.unx so that GlobalML.exe can be compiled and linked.

9. Possibly adjust unix.tmpl if necessary.
6

Chapter 3 License management

3.1 What are licenses?
For each machine you wish to run MathCode on, you should obtain one key file containing
the license. MathCode uses the same MathID as Mathematica does to distinguish between
machines. A key file is a text file containing a mix of letters and digits. Key files should be
put into the Licensing subdirectory of the MathCode installation. The names of the key
files do not matter.

3.2 Adding a license
When you register for a new MathCode license, you will receive a file that should be put in
the Licensing subdirectory of your MathCode installation.

3.3 The license index file
MathCode will use an index file index.m in the Licensing directory to speed up license
lookups. If a new license is added, index.m is rebuilt automatically as needed.

If you experience problems with the licensing, you can remove the index.m file,
forcing MathCode to rebuild it on the next license check.

For a site installation, users might not have write permissions to the Licensing
subdirectory. In this case, the system administrator should rebuild the index file by
evaluating the following in Mathematica:

Needs["MathCode‘"];
RebuildIndex[ToFileName[{$MCRoot,"Licensing"}]];

If index.m didn’t exist, you will se an error message about opening it. This error message
can safely be ignored.
7

Chapter 4 More on compiler definitions

The file MathCodeConfig.m in the main MathCode directory controls the MathCode
runtime configuration. This file is really a Mathematica package that contains some
configuration directives; currently DefineCompiler[] and DefaultCompiler[].

DefineCompiler[] is used to associate a symbolic compiler name (a string) with a
make file, a command template, and a build command. You don't normally need to bother
with these details.

DefaultCompiler[] is used to select the default compiler definition for a language.
Currently the only language supported for code generation is C++. In MathCodeConfig.m
you might find a line

DefaultCompiler["C++"->"mingw32"];

This tells MathCode to use the included "mingw32" compiler definition when generating
C++ code. If you wish to use Visual C++ instead (assuming you are on the Windows plat-
form), you should change this to read:

DefaultCompiler["C++"->"vc60"];

If there are several DefaultCompiler definitions, the last one is taken into account.

Using a different compiler can be easier than that, with the new options to CompilePack-
age[], MakeBinary[] and BuildCode[].

CompilePackage[] takes a Language option (currently only C++ is supported).
MathCode will then use the default compiler for the specified language. Example:

CompilePackage[Language->"C++"];

MakeBinary[] takes a Compiler option; the option value should be one of the symbolic
names (strings) defined using DefineCompiler[]. The Compiler option to MakeBina-
ry[] overrides the default compiler specified for the selected language. Example:

MakeBinary[Compiler->"g++"];

As usual, BuildCode[] can be given both CompilePackage[] and MakeBinary[] op-
tions. The following example will generate C++ code and use the "CC" compiler to compile
it, overriding any default specification:

BuildCode[Language->"C++", Compiler->"CC"];

The above example assumes that you are using MathCode on Solaris.
8

	MathCode Fortran90 installation instructions for MacOSX machines and license administration
	Version 1.2.4,
	April 6, 2011.

	Chapter 1 Installation step by step
	Please follow these steps for successful MathCode F90 installation.
	1.1 Check your Mathematica, GCC version
	Mathematica 6.0,7.0, 8.0 are supported only, for Intel processors only.
	You need the GCC compiler which is included in free XCode tool (http://developer.apple.com/tools/download/).
	The following MacOSX releases were tested:
	Mac OS X version 10.4.* ("Tiger") with XCode 2.4.1,
	Mac OS X version 10.5.* ("Leopard") with XCode 3.1.1,
	Mac OS X version 10.6.* ("SnowLeopard") with XCode 3.2.1
	MathCode relies on compatibility between GCC and G95 versions.
	GCC versions between 3.3 and 4.4 were tested. If you have a different GCC version please read the Section 2.1.

	1.2 Choice of compilers
	MathCode F90 for MacOSX requires the G95 compiler.

	1.3 Install G95 properly before MathCode installation
	MathCode F90 requires the G95 compiler. It is available from http://www.g95.org. Download a stable version for "x86 OSX" platform.
	G95 version 0.91 (March 2008) was tested. Later releases should work as well.
	Choose a directory for installation. In order to make possible for other users to run g95 you should grant read permissions for this directory.
	Unpack the downloaded tarball (e.g. g95-x86-osx.tgz) in a directory
	of your choice:
	tar -zxvf g95-x86-osx.tgz
	Create a symbolic link from a directory in your $PATH (e.g. ~/bin) to the executable
	ln -s $PWD/g95-install/bin/*g95* ~/bin/g95
	You should now be able to run g95 and create executables.
	As an alternative, in order to make possible for other users to run g95 you should use a common directory which is present in everyone’s $PATH, and create a symbolic link with name /usr/bin/g95 or /usr/local/bin/g95 :
	sudo ln -s $PWD/g95-install/bin/*g95* /usr/bin/g95
	sudo ln -s $PWD/g95-install/bin/*g95* /usr/bin/g95
	If you have no administrative rights you can adjust "g95" everywhere in the make-files System/u95.unx and lib/sheep/u95.mak.

	1.4 Installing Intel Fortran compiler before MathCode installation
	1.5 Determine your $MachineID
	The $MachineID is needed for registration. It is the identity of the machine you want a license for. To find out your $MachineID, evaluate the following in Mathematica:
	$MachineID

	1.6 Obtain license key for purchased license
	http://www.mathcore.com/register.html

	1.7 Obtaining license key for demo (trial) license
	http://www.mathcore.com/products/mathcode/
	and click on Download Trial version

	1.8 Previous MathCode installations
	~/Library/Mathematica/Applications/MathCode.m

	1.9 Different Mathematica installations
	An installed MathCode can be used with only one Mathematica installation. If you switch to a different Mathematica version you must re-install MathCode. Otherwise difficult linking error messages will occur.

	1.10 Check for the latest release
	http://www.mathcore.com/products/mathcode/download/downloadframe.shtml

	1.11 Decide whether you need personal installation or root installation.
	On MacOSX machines you should install MathCode under your own home directory.

	1.12 Installation procedure
	You obtain file mathcode-macosx-version.tar
	Use command tar -xvf mathcode-macosx-version.tar to unpack this archive.
	Run the file install.system, either by ./install.system (preferred) or sh install.system (if the file is not flagged as executable on the CD) and follow the on- screen instructions.
	The installation script compiles all necessary MathCode runtime libraries, therefore you do not need to care about libc library versions (as it was in MathCode C++ for Linux 1.2.2 and earlier).
	If you have any special settings (PATH, GCC flags etc.) when you compile the runtime library, these settings should be preserved when you use MathCode C++ for compilation.
	Please run the test Demos/Verify/testlinux.m after installation.
	The message indirect jmp without '*' is an internal to g95 on MacOSX and can be ignored.

	1.13 Parallel installations
	You can install several installations of MathCode, but only one of them (the latest one) will be used within Mathematica.

	1.14 Uninstall
	At the end of installation the script tells the name of a file (uninstall-system.sh) which contains commands for uninstall.

	Chapter 2 Advanced adjustments
	2.1 Using different GCC version
	If you have a different and unexpected GCC release, then installation may stop. Please install another gcc toolkit and place its directory first in the path, so that shell commands "gcc" and "g++" invoke the tools of different version.
	Execute the command Run["echo $PATH"] from Mathematica to see the actual path.
	In addition to this you will need to set up a symbolic link so that commands invoked from within Mathematica sessions search for...
	Typical commands to adjust the g++ in use can be:

	2.2 Using a different Fortran90 compiler
	Steps needed for attaching a different Fortran90 compiler on any UNIX-like operating system are:
	1. Study MathCodeConfig.m, it refers to u95.unx and unix.tmpl.
	2. Study how unix.tmpl makes Global.cmd.
	3. Study how Global.cmd calls System/u95.unx.
	4. Study how System/u95.unx calls lib/sheep/u95.mak.
	5. Change *.f90 and *.c files in lib/sheep so that they can be compiled by your Fortran90 and C++ compiler.
	6. Change lib/sheep/u95.mak so that sheep.lib can be created.
	7. Investigate whether your Fortran90 and C++ compiler can compile files like Global.*
	8. Change System/u95.unx so that GlobalML.exe can be compiled and linked.
	9. Possibly adjust unix.tmpl if necessary.

	Chapter 3 License management
	3.1 What are licenses?
	3.2 Adding a license
	3.3 The license index file
	If you experience problems with the licensing, you can remove the index.m file, forcing MathCode to rebuild it on the next license check.
	For a site installation, users might not have write permissions to the Licensing subdirectory. In this case, the system administrator should rebuild the index file by evaluating the following in Mathematica:
	Needs["MathCode‘"];

	Chapter 4 More on compiler definitions
	The file MathCodeConfig.m in the main MathCode directory controls the MathCode runtime configuration. This file is really a Mathematica package that contains some configuration directives; currently DefineCompiler[] and DefaultCompiler[].
	DefineCompiler[] is used to associate a symbolic compiler name (a string) with a make file, a command template, and a build command. You don't normally need to bother with these details.
	DefaultCompiler[] is used to select the default compiler definition for a language. Currently the only language supported for code generation is C++. In MathCodeConfig.m you might find a line
	DefaultCompiler["C++"->"mingw32"];
	DefaultCompiler["C++"->"vc60"];
	CompilePackage[] takes a Language option (currently only C++ is supported). MathCode will then use the default compiler for the specified language. Example:

	CompilePackage[Language->"C++"];
	MakeBinary[Compiler->"g++"];
	BuildCode[Language->"C++", Compiler->"CC"];

