10.3 Appendix 161

Appendix A The Compilable
Mathematica Subset

This chapter of MathCode User Guide describes the MathCode C++ release 1.4.2, July
2009.

Note that the Compilable Subset varies from one release to another. Please read the Release
Notes attached to your MathCode installation for the most actual information

The MathCode system provides facilities to translate a subset of the Mathematica language
to compiled programs in strongly typed languages such as C++ or Fortran90. This subset
includes most elementary functions and operators that compute numeric values, but ex-
cludes symbolic and computer algebra-related functions that compute symbolic expressions.

However, it is possible to evaluate a symbolic expression (which may contain operations
such as simplification, symbolic differentiation, substitution etc.) and generate executable
numeric code from the symbolic expression resulting from this evaluation, provided that the
resulting expression(s) only contain operators and functions in the compilable Mathematica
subset described here.

The arithmetic model used in the compilable Mathematica subset is specified by the
IEEE Standard for Binary Floating Point Arithmetic, IEEE Standard 754.

A.1 Operations not in the Compilable Subset

The following is a short list of those Mathematica operations and functions not in the com-
pilable subset. Since the primary reason to generate compiled code is to get high perfor-
mance of numeric computing code, the operations in the compilable subset are oriented to-
wards efficient computing on numbers and arrays.

* Pattern matching is not supported, except for the simple case of function argument
patterns like argl Integer or arg2 Real, which are handled by the static type
system of the target language. However, overloading of functions is not supported by

162 10.3 Appendix

the current version of the code generator, e.g., there may not be two functions with the
same name and arguments, one having Integer typed arguments and the other having
Real typed arguments.

* When a function is declared, its arguments must be specified as single-variable names,
separated with commas. As an example, node patterns like Name [a_, b] below are not
permitted.

foo [Real[2] a , Real c]->Real[2] := ... correct
fie [Real[2] Name[a ,b], Real c_]->Real[2]:= ... incorrect

* Arbitrary precision numbers and arithmetic are not supported. Numbers and arithmetic
operations are converted to either IEEE double precision floating-point arithmetic or 32-
bit (or better) integer arithmetic.

e Symbolic operations that give symbolic expressions as results are not included.
However, such operations can be compiled if they are expanded to expressions in the
compilable subset before code generation. Such expansion can handle many common
cases of symbolic operations.

¢ Negative array indexing, relative to the end of arrays, is not in the compilable subset,
apart from the special cases of negative constant indices, e.g., as in arr [[-3]], array
ranges such as arr [[1|-n]], and submatrix extraction, as described on page 111. To
index from the end of an array, FromEnd should be used with a positive argument.

* String operations are not included. except for assignment to scalar variables and
argument passing.

* Input/Output operations are not included, apart from a simple Print operation.

» Certain list (i.e. array) operations, specifically those that change the size of arrays or are
very inefficient, are not included in the set of functions mentioned in this appendix. Such
functions can be added by the user e.g. in the system module.

e The Return[] function is not included. Therefore loop constructs like For, While
cannot be used as expressions returning values.

* Some procedural style statements cannot be used within a CompoundExpression used
in value context within arithmetic expressions. For instance,
a=a+ (While[i<10,i=i+1];5) cannot be translated.

The expression a=a+ (c=3;5), however, can be translated to C++. More details on
nested constructs are given below.

e There are also a number of built-in standard Mathematica functions with numeric
arguments and results which are not availiable outside Mathematica, but which can be
considered to belong to the compilable subset in the sense that callback stub functions

10.3 Appendix 163

(via MathLink) for these Mathematica functions can be generated.

A.2 Predefined Functions and Operators

Expression operators listed in this section are predefined by the code generator and will be
translated correctly from Mathematica into the target language (e.g. C++ or Fortran90) with-
out any additional type declarations.

Almost all operators belong to the compilable expression subset, e.g., all value-returning
operators and predefined or user-defined functions without side effects (i.e. functions that do
not change global variables or perform input/output).

The reason for imposing the condition of calls to side-effect free functions is that
expressions can be re-ordered and common subexpressions removed in the generated code,
in order to make execution more efficient. Another order in assigning and referencing global
variables or performing input/output usually results in different, often unintended, program
behavior. However, some restricted cases of side-effects can be re-ordered without changing
the meaning of the program. One such case is when the elements of an array are assigned
once, independently of each other, and are not used in the same expression. Such restricted
side-effects are allowed for functions in the compilable expression subset. The code
generator does not check the condition of side-effect freeness—this is the user’s
responsibility.

All operators and functions in the compilable expression subset also belong to the
compilable subset, which contains control expressions (If, While, For, etc.), assignment
statements and functions with side effects. All real and integer constants naturally belong to
the compilable expression subset, except for the special case of arbitrary-precision values.
Some operators and functions can be applied to arrays or return arrays as values.

The current version of the compilable subset is oriented toward operations on real
numbers and integers, and arrays containing such numbers. The basic mathematical
functions usually found in C/C++ or Fortran are provided. In Mathematica there are also a
number of special mathematical functions such as BesselJ[], Gamma [], etc. If the user
has access to an implementation of such a function in C/C++ or Fortran, or a linkable object
code library containing this function, it can be declared as an external function and thus
automatically included in the compilable subset. Alternatively, such functions can be
approximated by externally compiled interpolating functions or declared as callbacks,
which makes the code generator produce stub functions, e.g in C/C++, that perform callback
to Mathematica.

Since efficient computation based on mathematical models has been the main
application of MathCode so far, the compilable Mathematica subset does not include string
operations, file input, formatted file output and certain mapping and list operations.

164 10.3 Appendix

A.2.1 Statements and Value Expressions

In standard Mathematica, all predefined and user-defined functions can appear as an argu-
ment of another function. Accuracy of such constructs is tested during code interpretation.

In procedural languages, such as C++ and Fortran, procedural statements cannot be used
within expressions. Also, the type of allowed expressions is restricted.

In order to compile Mathematica code to procedural language, some restrictions in using
statements and expressions are introduced.

In the descriptions below “stmt” means that corresponding Mathematica expressions are
used as statements. In the compiled subset they do not return values, their returned values
cannot be used, and they cannot be applied where values are expected. In the compiled set
there is no Null value.

In descriptions below “expr” means that corresponding Mathematica expressions are
used as values (I-value or r-value). These expressions must return some value when
evaluated. This value cannot be Null. The word “exprs” means one or more expressions
separated by a comma.

Some Mathematica constructs - Set, If, Which, CompoundExpression - can
appear both as statements and as values. Some specific restrictions on their use are described
below.

A.2.2 Function Call
Spec syntax ~ Operator Arg type(s) Result type(s)

funcname[exprs]

All user-defined functions which have been type declared according to the typing rules for
typed Mathematica belong to the compilable subset. The same is true for functions that are
declared as ExternalFunction or ExternalProcedure, and exist in a library or an ob-
ject code file that can be linked together with the generated code in C++ or Fortran90. Com-
pilable subset functions may only contain operations that belong to the compilable subset,
or may contain non-subset operations inside bodies of functions compiled with the Evalu-
ateFunction option, which will expand into compilable subset operations.

Functions with multiple return arguments can be compiled if they are type declared.
Such a function can only be used on the right-hand side of an assignment statement in which
the left-hand side has to be a list of variables. Thus, a call that returns multiple values can
look like this:

{a, b, ¢} = Flx+ty, 3.4];

Calls to functions with no return arguments and functions with more than one return argu-
ments are to be considered statements (stmt).

10.3 Appendix 165

Calls to functions returning one argument are considered to be expressions (expr).

A.2.3 Function Definition

A function returning values can be defined as follows:

function namelarg type, arg,, ..., arg type, arg,l->result types :=
expr

function name [arg type; argy, ..., arg type, argn]->
result types := Module[variables, expr]

function name [arg type; arg,;, ..., arg type, argn]->
result types := Modulel[variables, stmtl;stmt2;...;expr]

A function that does not return values can be defined as follows:
function namelarg type; arg;, ..., arg type, argn]->Null := stmt

function namelarg type, arg,, ..., arg type, argn]->Null :=
Module [variables, stmt;]

function namelarg type; arg,, ..., arg type, argn]->Null
Module [variables, stmtl; stmt2;...;stmtn;]

Block or With can be used instead of Module.

In addition, functions can be defined as interpolating functions by using the Mathematica
function FunctionInterpolation. Code generation is limited to interpolation function
objects of one or two variables. Below is an example of a definition of an interpolation func-
tion.

intpolmyFunc=FunctionInterpolation[myFunc[t], {t, lower,upper}];

A.2.4 Scope Constructs

Spec syntax ~ Operator Arg type(s) Result type(s)
Module[variables,body] special none/(fnbody)
Block[variables, body) special none/(fnbody)
With[variables,body) special none/(fnbody)

A value can be returned from one of the above scope constructs when it occurs as a function
body or when it is used in a value context within an expression. The body is restricted as

166

10.3 Appendix

follows:

e If a function does not return any value, the body is a statement. If it is a
CompoundExpression statement, then all (possibly nested) elements in

CompoundExpression must be statements.

In the following example two nesting levels of CompoundExpression are

demonstrated:

foo[Real a]->Null := Module[{ Real t},

(t=a+1;t=t+1); (t=t+2;t=t+3)]

e If a function returns one or more values, the body is an expression. If it is a
CompoundExpression construct, then the last (possibly nested) element in the
CompoundExpression must be an expression. All other components must be

statements.

In the following example two nesting levels of CompoundExpression are

demonstrated; note that t+4 is an expression.

foo[Real a]->Real := Module[{ Real t},
(t=a+1l;t=t+1); (t=t+2;t=t+3;t+4)]

A.2.5 Control Statements

The control statements can appear wherever a statement is allowed, in which case they do

not return any value.
Spec syntax ~ Operator Arg type(s)

815 893eee CompoundExpression [stmts] statements
For [start-stmt,
boolean-test-expr,

incr-stmt, body-stmt] special
While [boolean-test-expr,

body-stmt] special
If [boolean-test-expr, true-stmt,
false-stmt] special

Which [boolean-test-expr, stmt,
boolean-test-expr,, stmt,,...] special

Break [] -

Do [expr, iterators] special

Result type(s)

none

none
none
none
none

none
none

The CompoundExpression (asequence of expressions separated by semicolons) Which
and I £ can also appear as an arithmetic expression. See “Arithmetic expression” for details.

10.3 Appendix 167

A.2.6 Mapping Operations
Map expressions can be compiled in the following cases:

var=Map |[f, expr]
var=Map|[f, expr, {n}]

The result must be directly assigned to a variable as shown. The function f can be:

* A function symbol of the compilable subset
* An anonymous function, also called pure function in Mathematica

* A user defined typed function for which code has been generated

n must be an integer constant. The var=Map| . . .] statement will be converted to a corre-
sponding assignment statement with a call to Table on the right-hand side.

A.2.7 Iterator Expressions

Computing operations in Mathematica such as Do, Sum, Product and Table use iterators.
Additionally there are a number of plotting functions such as Plot, ContourPlot, Den-
sityPlot, Plot3Dand ParametricPlot, which also use iterators but with some limita-
tions in form and usually constructing sets of real values for the purpose of plotting. These
plotting functions are not part of the compilable subset.

An iterator can take on one of the following forms:

Form Explanation

{imax} iterate imax times

{i,imax} i goes from 1 to imax in steps of 1

{i,imin,imax} i goes from imin to imax in steps of 1
{i,imin,imax,di} i goes from imin to imax in steps of di
{i,imin,imax},{j,jminjmax} Two iterators: i controls the outer iteration loop,

Jj controls the inner loop

Iterators in Mathematica can use either integer or real values for the iteration variables in
the iteration. The compilable subset of iteration functions is limited to integer iteration vari-
ables. The iteration variables in Mathematica are declared in a local scope consisting of the
body (the expr below) of the iteration function. Thus, translated code in C++ needs to de-
clare those iteration variables in a way that does not clash with other local variables. Typi-
cally, these iteration constructs will be translated to (nested) for loops in the target lan-
guage.

Iteration functions in Mathematica may or may not return a value. The functions Sum,

168 10.3 Appendix

Product, Table and Range always return a value from the iteration. Loop-terminating
constructs like Return, Break, Continue, or Throw can be used inside Do. However, Do
in Mathematica does not return a value except in the case of an explicit Return of a value.

The compilable subset currently does not support return of a value from a Do loop.
Another constraint of the compilable subset is that the constructs Sum, Product and Table
may currently only occur on the right-hand side of an assignment statement. Concerning
Table, see also Section A.2.12.

Spec syntax Operator Arg type(s) Result type(s)
Dolexpr,iterl,iter2,...] special none
Sum|expr, iterl,iter2,...] Real,Integer,Complex Real, Integer,Complex

Product[expr,iterl,iter?2,...] Real Integer,Complex Real, Integer,Complex
Table[expr,iterl,iter2,...] Real,Integer,Complex Array

A.2.8 Input/Output Operations
(Export and Import are new in MathCode 1.4)

Operator Arg type(s) Result type(s)
Print[exprs] Real, Integer, Array, String,Com- none

plex
Export[filename,expr,format| filename is a String ("file.fmt") String
Export[filename,expr] expr is an Array (1D or 2D) of

Real, Integer ,Complex
format is a String ("CSV" or

"List")
var=Import[filename,format] filename is a String ("file.fimt") Array (1D or
var=Import[filename] format is a String ("CSV" or 2D) of Real
"List") Integer or

Complex

When Print[] is performed the output is placed on the standard output stream of the external
process where the generated code is executing. For some operating environments (e.g. with
MathLink) this stream is not available.

In Export[] and Import[] the format is determined by the argument format which can
be "CSV" or "List”. If it is missing, then the format is determined by the suffix of the

filename ("".CSV" or ".csv")
The Import[] can be used within the assignment statement only. If this is the last

10.3 Appendix 169

statement of the function, it is recommended to write foo[]:=(var=Import|...];var). The
type of variable var should match the type of the values saved in the file.

In contrast to Mathematica behavior, if var is a 2D array, but the file contains just 1D
data, the 1-column 2D array is created (such as {{1},{2},{3}}.

Only rectangular 2D arrays are supported. If var has a Complex base type, then
Complex, Real and Integer data are accepted for Import operation.

No other Export/Import formats are supported, and no format-specific options are
supported.

Import of Complex numbers ("CSV" or "List") is not really supported in Mathematica.
It requires conversion of strings to expressions (ToExpression[]); this is not needed for
MathCode.

The recommended ways to perform other formatted input/output from generated code
are via callback functions or external functions.

A.2.9 Standard Arithmetic and Logic Expressions

Spec syntax ~ Operator Arg type(s) Result type(s)

== Equal[e;,e;] Real,Integer,Array, Boolean
Complex

1= Unequal[ey,e,] Real,Integer,Array, Boolean
Complex

> Greater[e;,e;] Real, Integer, Complex Boolean

< Less[e},e,] Real, Integer, Complex Boolean

>= GreaterEqual[e;,e;] Real, Integer, Complex Boolean

<= LessEqual[e},e;] Real, Integer, Complex Boolean

Inequality[exprs...] special Boolean

! Not[e] Boolean Boolean

I Orl[exprs...] Boolean Boolean

&& And[exprs...] Boolean Boolean

+ Plus[exprs...] Real,Integer,Array, Real,Integer,Array,
Complex Complex

- Subtract[e;,e,] Real,Integer,Array, Real,Integer,Array,
Complex Complex

- Minus[exprs...] Real,Integer,Array, Real,Integer,Array,
Complex Complex

170

10.3 Appendix

Spec syntax

*

Operator

Times[ej,e,]
DiVide[el,ez]
MOd[el,ez]

Rational[e;,e,]
Power[e},e,]

Abs[e]

If[boolean-test-
expr,true-expr,
false-expr]
Sign[e]
Floor[e]
Ceiling[e]
Rounde[e]
Sqrt[e]

Expl[e]
Logle]
Sin[e]
Cosle]
Tan[e]
Cotfe]

Sec[e]

Arg type(s)
Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

1st arg Boolean;
Real,Integer,Array,
Complex

Real,Integer,Complex
Real,Array, Complex
Real,Array, Complex
Real,Array, Complex

Real,Integer,Array,
Complex
Real,Integer,Array,
Complex
Real,Integer,Array,
Complex
Real,Integer,Array,
Complex
Real,Integer,Array,
Complex
Real,Integer,Array,
Complex
Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Result type(s)

Real,Integer,Array,
Complex

Real, Array, Complex
Real, Array, Complex
Real

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Integer,Complex
Integer,Complex
Integer,Complex
Integer,Complex
Real, Array, Complex

Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Real, Array, Complex

Real, Array, Complex

10.3 Appendix

171

Spec syntax

€]

. € ...

Operator
Cscle]

ArcSin[e]
ArcCos[e]
ArcTan[e]
ArcTan[e},e,]
ArcSinh[e]
ArcCosh[e]
ArcTanh[e]
ArcCoth[e]
IntegerPart[e]
FractionalPart[e]

Quotient[el,e2]
Max[m,n]
Min[m,n]
Max|e]

Max|e]

Min[e]

Min][e]
Outerf[eq,e;]
Cross[ey, ey,...,.€,]
Transpose[e]
Dot[ey,e,...]

Arg type(s)
Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array,
Complex

Real,Integer,Array
Real,Integer
Real,Integer
Array of Real
Array of Integer
Array of Real
Array of Integer
1D-Array,1D-Array
Arrays

2D-Array

Array

Result type(s)
Real, Array, Complex

Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Real, Array, Complex
Integer, Array, Complex

Real,Integer,Array,
Complex

Integer,Array
Real,Integer
Real,Integer
Real

Integer

Real

Integer

Array

Array
2D-Array
Real,Integer,Array

172 10.3 Appendix

Spec syntax ~ Operator Arg type(s) Result type(s)
CompoundExpres- statements expr
sion[stmt;, ...,stmt,,
expr]

For functions with two arguments, the following rule applies: one argument can be Array
and another argument can be either scalar (of the same type as the base type of the array) or
Array of the same dimension. This does not apply to == and !=.

Those functions that return an integer value converted from real: Sign, Floor,
Ceiling and Round, give an undefined value or an exception (depending on the
underlying target language, e.g. C++) when trying to fit too large a number into an integer.

The following functions are implemented according to Mathematica semantics':

* TIntegerPartreturns (int)x for Reals and int (Re(x)+ i int(Im(x)) for
Complexes

® FractionalPart returns x-IntegerPart (x)

e Quotient[m,n] returns Floor (m/n) for Reals. It is not defined for
Complexes

* Floor(x) for Complexes is Floor (Re(x) + i Floor(Im(x)))

e Mod[m, n] returns m%n if m and n have the same sign and m%n+n if they have opposite
signs. If m or n is a Real then m-n*floor (m/n) is returned. If there is a Complex
argument passed to these functions they return a Complex result

e The Rational function is part of the compilable subset. It is treated exactly like
Divide and converted to Divide during code generation.

* The special purpose Cross function computes the cross product of n-7 vectors of length
n and returns a vector of length n. For example, Cross[{2, 3,4}, {5,6,7}] returns
the vector {-3, 6, -3} which is orthogonal to the two argument vectors. The function
Cross is implemented for n= 3, 4, 5 according to the generalized Mathematica
definition.

The CompoundExpression construct when used as a value within another statement
or expression (but not as a function definition) has the following limitation: the statements
(stmty,..., stmt,) allowed within CompoundExpression are assignments (Set), Print or
Put only.© Assignment to list cannot be used there. For instance:

1. Read Release Notes for more information
2. Read Release Notes for more information

10.3 Appendix 173

a=b+ (While[i<10,i=i+1] ; c); (* not allowed *)
a=Foo[{d, £}={3,5} ; c 1; (* not allowed *)
a=b+ (Print[x];c); (* allowed *)

foo[Real a]->Real=(i=i-1; (While[i<10,i=i+1] ; c)) // allowed

A.2.10 Named Constants

Spec syntax ~ Operator Arg type(s) Result type(s)
True - Boolean
False - Boolean
E - Real
Pi - Real
I - Complex

Variables of type Boolean are not supported in the compilable subset. If boolean values are
assigned to integer variables, False becomes 0, True becomes non-zero. Named constants
are expressions (expr).

A.2.11 Assignment Expressions

Spec syntax Operator Arg type(s) Result type(s)
var =e SetDelayed[var,e] all types value
var = expr Set[var,expr] all types value
{vars} = funcall Set[List[vars],funcall] - none
{vars} = expr Set[List[vars],expr] - none

The supported main assignment functions, Set and SetDelayed, have return types. There-
fore these can be used both as statements and as expressions.

The arguments (left- and right-hand side of the assignment) must be of compatible types.

Left- and right-hand side arguments are compatible if they can be made into the same
type by performing standard type promotion (e.g. promoting integer to real, or a scalar or
lower-dimensional array to a higher-dimensional array), provided that this promotion does
not change the type of the left-hand side. If it does, then the assignment is illegal. This means
that an expression of a real type cannot be assigned to a variable of integer type without
using explicit conversion of the right-hand side (e.g. using Floor[]).

In the case of simultaneous assignment to a list of variables { vars}, funcall must be a
call to a function returning a list of the same length as the list on the left-hand side of the
assignment. Also, the vars list on the left-hand side may only contain variables.

174 10.3 Appendix

A.2.12 Array Data Constructors

Spec syntax ~ Operator Arg type(s) Result type(s)
Array[exprfunc,{diml,dim2,...}] exprfunc constant Array
Table[expr,{diml},{dim2},...] Array
Table[expr,{i,imin,imax,istep},{j jmin,jmax,jstep},...] Array
IdentityMatrix[#n] Integer Array (2D)
DiagonalMatrix[vec] Array (1D) Array (2D)
Range[n] Real or Integer Array (1D)
Range([start, end] Real or Integer Array (1D)
Range[start, end, step] Real or Integer Array (1D)

See also section A.2.7 concerning iterator expressions. The following limitations currently
apply to compilation of Array, Table, IdentityMatrix and DiagonalMatrix calls:
the exprfunc used by Array may only be a constant function; local iteration variables used
in iterators to Table are automatically created but are always of type Integer; calls to
Array, Table, IdentityMatrix and DiagonalMatrix may only occur on the right-
hand side of an assignment statement, for example:

arrvariable = Table[3.1+i+3, {i,5}, {j,1,10,2}]

A.2.13 Array Data Manipulation

(new in MathCode 1.4)
Operator Arg type(s) Result type(s)

Append[ar2,ari] The rank of ar2 is one Same as ar?
higher than
the rank of ar!/
arl is Real, Integer,
Complex, or

1D,2D,3D array of them

Prepend[ar2,ari] same as Append][]

Droplar.,idx] ar is Real, Integer, Same as ar
Complex, or

array of them;
idx is Integer

10.3 Appendix 175
Drop[ar,{idx1,idx2}] idx1, idx2 are Integer Same as ar
Join[ar,ar] ar is Real, Integer, Same as ar

Complex, or
1D,2D,3D array of them
Flatten[ar] aris 1D,2D,3D,4D array Reduces the rank
Flatten[ar,lev] of Integer, Real or Complex of ar according to
lev is Integer lev

In all these operations the input and output arrays must be rectangular. Dimension sizes must
be consistent for this purpose. Otherwise run-time errors will occur.

A.2.14 Statisics and sorting functions

(new in MathCode 1.4)
Operator

Mean[arg]

Variance[arg]

StandardDeviation[arg]

Median[arg]

Sort[arg]

Quantile[arg, ar2,quad)]

Quantile[arg, ar?]

Quantile[arg, r2,quad]

Arg type(s)

Array of Integer,
Real, Complex

Array of Integer,
Real, Complex

Array of Integer,
Real, Complex

Array of Integer,
Real

Array of Integer

Real, Complex

arg is 1D Array of Integer,
Real, Complex

arg is 1D Array of Integer,
Real, Complex
arg is 1D Array of Integer,
Real, Complex

Result type(s)

Real or Complex
or

Array of them
Real or Complex
or’

Array of them
Real or Complex
or

Array of them
Real

or

Array of them
same as arg

same as arg
(Real or Complex)

same as arg
(Real or Complex)
rank is one

less than rank of arg

176 10.3 Appendix

(Real or Complex)
Quantile[arg, r2] arg is 1D Array of Integer, rank is one
Real, Complex less than rank of arg
(Real or Complex)

All statistics functions (except Quantile) operate on rectangular numerical 1D, 2D, 3D and
4D arrays with Integer, Real and Complex base types. Arrays with Real and Complex types
are returned.

The command Median[] does not work with Complex numbers in Mathematica.

The operations Mean[], Variance[], StandardDeviation[] and Median[] reduce the rank of
array by one; e.g. if an array of type Real[2,3,4] is given as an argument, then Real[3,4] is
returned.

In the case of Quantile[] certain rules apply. The argument arg should be a 1D array of
Integer , Real or Complex. The argument ar2 should be 1D array of Reals. The argument
r2 should be a Real. The argument guad is a quadruple {{Real,Real}, {Real,Real}}. If ar2
is used, the command performs the same rank reduction as in above commands. If 72 is used
then the result has the same type as arg. The base type of the result is propagated from
Integer to Real, i.e. Integers are never retuned from this function.

A.2.15 Array Dimension Functions

Spec syntax Operator Arg type(s) Result type(s)
Dimensions[arr][[i]] Array Integer
Dimensions|arr] Array Array of Integers
Length[arr] Array Integer

A.2.16 Array Indexing
Spec syntax ~ Operator Arg type(s) Result type(s)

arr[[ind]] Part[arr,ind)] Integer Integer,Real, Array
Extract[al,a2] Array of Integer constants Array of Element Type

Extract[a, i] takes an array of rank 1,2,3, or 4 as the first argument and a vector of inte-
gers as the second argument. It returns the base element of the first array. If the size of the
vector i is not equal to the rank of a then a runtime error may occur.

The Part construct can be used in both the left and right parts of an assignment. The
number of indices should be less than or equal to the rank of the array. For instance, these
operations are allowed:

10.3 Appendix 177

Declare|
Real([3,3,3,3] a4;
Real[3,3,3] a3;
Real[3,3] a2;
Real[3] al;
Real x;

a3[1l]l=a2; a3[2,1]1=al; a3[3,1,2]1=5.5;
az2[ll=al; a2(2,21=7.7;
a4(2,3,1,2] = 6.6;

x=Extract([a4,{2,3,1,2}]
ad[l,2,3]1=al;ad[l,2]=a2;a4d4[l]l=a3;
This operation is not permitted:

al=Extract([a4,{2,3,1}] (* Wrong rank. May cause run time error *)

A.2.17 Array Section Operations

Spec syntax Operator Arg type(s) Result type(s)
arr[[_]] Part[arr,...] special Array
arr[[n; | _]] Part[arr,...] special Array
arr([ny | n,]] Part[arr,...] special Array

These are extensions to standard Mathematica. See Chapter 3 for more information. These
operations are currently supported for up to four dimensions by the code generator and for
arbitrary dimensions within Mathematica and can be used on both the left- and right-hand
sides of assignment statements.

A.2.18 Other Expressions
Spec syntax Operator Arg type(s) Result type(s)

{e}, €,...} List[expressions] all types Array
Applylf, args]

178 10.3 Appendix

List

List is partially implemented when appearing within expressions, for instance when used as
an actual parameter to a function. The arguments of List can be:

* Real expressions (creates an Array of Real)

* Integer expressions (creates an Array of Integer)

* Arrays of Real (creates a 2-, 3-, 4-dimensional Array of Real). Can be nested.

* Arrays of Integer (creates a 2-, 3-, 4-dimensional Array of Integer). Can be nested.

List is also implemented when it appears on the left-hand side of an assignment. In this case
Part is applied to the right-hand side, and all types should match!:

{a,b,{c,d}}=x (* is the same as
a=x[[1]];b=x[[2]);c=x[[3,1]1];d=x[[3,2]]; *)

A runtime error may occur if a matrix appears to be non-rectangular.
These special cases are implemented:

variable={expry,...,expr,}
{vary,...,var,}=expression
{vari,...,var,}={expr,,...,expr,}
Apply

The following cases of Apply are implemented:

* Plus, Power and Times applied to an expression with assignment to a typed variable:

var=Apply[Plus, expression] var = Plus (@@ expression
var=Apply[Power, expression] var = Power (@@ expression
var=Apply[Times, expression] var = Times (@@ expression

e Apply of typed functions, for example

var=Apply[function, expression] function @@ expression

The number of arguments to the function must match the length of the expression.

1. Read Release Notes for more information

10.3 Appendix 179

Apply of anonymous (pure) functions, for example

var=RApply[Sin[#1+#2] &, expression] Sin[#1+#2]& @@ expression

The code Apply[foo, expr], equivalent to foo QR expr, will be converted to
foolexpr[[1]],expr[[2]],...]. Therefore the behavior will be different from
that of Mathematica (and hence probably unexpected) if the number of parameters is not
the same as the length of the expression expr.

It is the user’s responsibility to ensure that the number of arguments to the pure
function is the same as the length of the expression. The number of arguments is taken
as the maximum slot number (for Function [body]) or the length of the variable list
(for Function[{vars...}, bodyl).

The expression given to Apply may be computed many times which may be a
performance issue. If the expression is large, it is better to assign the expression to a
temporary variable before using Apply.

No level specification is supported for Apply.

A.2.19 Operators Which May Have Side-effects

Spec syntax Operator Arg type(s) Result type(s)

var := e SetDelayed[var,e] all types none

var = expr Set[var,expr] all types none

{vars}=funcall Set[List[vars],funcall] special none
For[start,test,incr,body] special none
While[fest,body] special none
Do[expr,{iterl...},{iter2...}..] special none
[test, true-expr, false-expr] special none/expr
If[test, true-expr] special none/expr
Which[test;,val, testyval,,...] special none
Break]] - none

e; ;.. CompoundExpression[exprs] special type of last expression
Module[variables,body] special none/function value
Block[variables, body) special none/function value
With[variables,body] special none/function value

A.3 Predefined Types

As already mentioned, there are a number of predefined basic types included in the com-
pilable subset of Mathematica. There is also a set of predefined types, primarily array types,
which are included for convenience.

180 10.3 Appendix

A.3.1 Basic Types

Name Comment

Real IEEE double precision floating point

Integer 32 bit integer

String 8-bit byte string. May contain "\0’ characters.
Null Absence of type

Complex Two real numbers

A.3.2 Array Type Constructors
Name Comment
eltype[dim1,dim2,...] Here eltype is the array type constructor.

Maximal rank of arrays is 4 in the current implementation. The base type should be Real or
Integer.

A.4 Predefined Constants

The following constants are available within Mathematica, and are predefined to the follow-
ing values with 18 decimal digits within generated C++ or Fortran90 code. A standard dou-
ble precision floating-point value can hold slightly less than 16 digits of precision.

Name Value
Pi 3.14159265358979324
E 2.718 281 828 46

